| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991002013639707536 |
|
|
Autore |
Meloncelli, Achille |
|
|
Titolo |
L'iniziativa amministrativa / Achille Meloncelli |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano : A. Giuffrè, 1976 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Pubblicazioni dell'Istituto di studi giuridici della Facoltà di scienze politiche dell'Università di Roma Ser. 5 |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Amministrazione pubblica - Attivita d'iniziativa |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNISA996206249003316 |
|
|
Titolo |
Systematics and biodiversity |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[London], : Published for the Natural History Museum, UK |
|
[Cambridge], : Cambridge University Press, ©2003- |
|
[Abingdon], : Taylor & Francis |
|
|
|
|
|
|
|
|
|
ISSN |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Biodiversity |
Biology |
Classification |
Periodicals. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Periodico |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
|
|
|
|
|
Title from introductory page, viewed July 10, 2003. |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910817355103321 |
|
|
Autore |
Ibe Oliver C (Oliver Chukwudi), <1947-> |
|
|
Titolo |
Elements of random walk and diffusion processes / / Oliver C. Ibe |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : John Wiley & Sons, Inc., 2013 |
|
|
|
|
|
|
|
ISBN |
|
9781118617939 |
1118617932 |
9781118618059 |
111861805X |
9781118629857 |
111862985X |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (278 p.) |
|
|
|
|
|
|
Collana |
|
Wiley series in operations research and management science |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Random walks (Mathematics) |
Diffusion processes |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Elements of Random Walk and Diffusion Processes; Copyright; Contents; Preface; Acknowledgments; 1 Review of Probability Theory; 1.1 Introduction; 1.2 Random Variables; 1.2.1 Distribution Functions; 1.2.2 Discrete Random Variables; 1.2.3 Continuous Random Variables; 1.2.4 Expectations; 1.2.5 Moments of Random Variables and the Variance; 1.3 Transform Methods; 1.3.1 The Characteristic Function; 1.3.2 Moment-Generating Property of the Characteristic Function; 1.3.3 The s-Transform; 1.3.4 Moment-Generating Property of the s-Transform; 1.3.5 The z-Transform |
1.3.6 Moment-Generating Property of the z-Transform1.4 Covariance and Correlation Coefficient; 1.5 Sums of Independent Random Variables; 1.6 Some Probability Distributions; 1.6.1 The Bernoulli Distribution; 1.6.2 The Binomial Distribution; 1.6.3 The Geometric Distribution; 1.6.4 The Poisson Distribution; 1.6.5 The Exponential Distribution; 1.6.6 Normal Distribution; 1.7 Limit Theorems; 1.7.1 |
|
|
|
|
|
|
|
|
|
|
|
Markov Inequality; 1.7.2 Chebyshev Inequality; 1.7.3 Laws of Large Numbers; 1.7.4 The Central Limit Theorem; Problems; 2 Overview of Stochastic Processes; 2.1 Introduction |
2.2 Classification of Stochastic Processes2.3 Mean and Autocorrelation Function; 2.4 Stationary Processes; 2.4.1 Strict-Sense Stationary Processes; 2.4.2 Wide-Sense Stationary Processes; 2.5 Power Spectral Density; 2.6 Counting Processes; 2.7 Independent Increment Processes; 2.8 Stationary Increment Process; 2.9 Poisson Processes; 2.9.1 Compound Poisson Process; 2.10 Markov Processes; 2.10.1 Discrete-Time Markov Chains; 2.10.2 State Transition Probability Matrix; 2.10.3 The k-Step State Transition Probability; 2.10.4 State Transition Diagrams; 2.10.5 Classification of States |
2.10.6 Limiting-State Probabilities2.10.7 Doubly Stochastic Matrix; 2.10.8 Continuous-Time Markov Chains; 2.10.9 Birth and Death Processes; 2.11 Gaussian Processes; 2.12 Martingales; 2.12.1 Stopping Times; Problems; 3 One-Dimensional Random Walk; 3.1 Introduction; 3.2 Occupancy Probability; 3.3 Random Walk as a Markov Chain; 3.4 Symmetric Random Walk as a Martingale; 3.5 Random Walk with Barriers; 3.6 Mean-Square Displacement; 3.7 Gambler's Ruin; 3.7.1 Ruin Probability; 3.7.2 Alternative Derivation of Ruin Probability; 3.7.3 Duration of a Game; 3.8 Random Walk with Stay |
3.9 First Return to the Origin3.10 First Passage Times for Symmetric Random Walk; 3.10.1 First Passage Time via the Generating Function; 3.10.2 First Passage Time via the Reflection Principle; 3.10.3 Hitting Time and the Reflection Principle; 3.11 The Ballot Problem and the Reflection Principle; 3.11.1 The Conditional Probability Method; 3.12 Returns to the Origin and the Arc-Sine Law; 3.13 Maximum of a Random Walk; 3.14 Two Symmetric Random Walkers; 3.15 Random Walk on a Graph; 3.15.1 Proximity Measures; 3.15.2 Directed Graphs; 3.15.3 Random Walk on an Undirected Graph |
3.15.4 Random Walk on a Weighted Graph |
|
|
|
|
|
|
Sommario/riassunto |
|
"Featuring an introduction to stochastic calculus, this book uniquely blends diffusion equations and random walk theory and provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. It covers standard methods and applications of Brownian motion and discusses Levy motion; addresses fractional calculus; introduces percolation theory and its relationship to diffusion processes; and more"-- |
|
|
|
|
|
|
|
| |