1.

Record Nr.

UNINA9910482082603321

Autore

Baerle Caspar van <1584-1648.>

Titolo

Elegia et epistola nvptialis, ad nobilissimum [...] virum D. Adrianvm vander Myle [...]; cum domum duceret [...] D. Agatham van Raephorst. By Caspar Barlaeus [[electronic resource]]

Pubbl/distr/stampa

Amsterdam, : Willem Jansz Blaeu, 1571-1638, 1634

Descrizione fisica

Online resource (2°)

Lingua di pubblicazione

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Reproduction of original in Koninklijke Bibliotheek, Nationale bibliotheek van Nederland.

2.

Record Nr.

UNISA996204084603316

Autore

Stoker J. J (James Johnston), <1905->

Titolo

Water waves [[electronic resource] ] : the mathematical theory with applications / / J.J. Stoker

Pubbl/distr/stampa

New York, : Wiley, 1992

ISBN

1-283-24650-3

9786613246509

1-118-03315-9

1-118-03135-0

Descrizione fisica

1 online resource (598 p.)

Collana

Wiley classics library

Disciplina

532.593

Soggetti

Water waves

Hydrodynamics

Hydraulics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Originally published: New York : Interscience, 1958.

"A Wiley-Interscience publication."



Nota di bibliografia

Includes bibliographical references (p. 545-560) and indexes.

Nota di contenuto

Water Waves: The Mathematical Theory with Applications; Introduction; Acknowledgments; Contents; PART I; 1. Basic Hydrodynamics; 1.1 The laws of conservation of momentum and mass; 1.2 Helmholtz's theorem; 1.3 Potential flow and Bernoulli's law; 1.4 Boundary conditions; 1.5 Singularities of the velocity potential; 1.6 Notions concerning energy and energy flux; 1.7 Formulation of a surface wave problem; 2. The Two Basic Approximate Theories; 2.1 Theory of waves of small amplitude; 2.2 Shallow water theory to lowest order. Tidal theory; 2.3 Gas dynamics analogy

2.4 Systematic derivation of the shallow water theoryPART II; Subdivision A Waves Simple Harmonic in the Time; 3. Simple Harmonic Oscillations in Water of Constant Depth; 3.1 Standing waves; 3.2 Simple harmonic progressing waves; 3.3 Energy transmission for simple harmonic waves of small amplitude; 3.4 Group velocity. Dispersion; 4. Waves Maintained by Simple Harmonic Surface Pressure in Water of Uniform Depth. Forced Oscillations; 4.1 Introduction; 4.2 The surface pressure is periodic for all values of x; 4.3 The variable surface pressure is confined to a segment of the surface

4.4 Periodic progressing waves against a vertical cliff5. Waves on Sloping Beaches and Past Obstacles; 5.1 Introduction and summary; 5.2 Two-dimensional waves over beaches sloping at angles ω=π/2n; 5.3 Three-dimensional waves against a vertical cliff; 5.4 Waves on sloping beaches. General case; 5.5 Diffraction of waves around a vertical wedge. Sommerfeld's diffraction problem; 5.6 Brief discussions of additional applications and of other methods of solution; Subdivision B Motions Starting from Rest. Transients; 6. Unsteady Motions; 6.1 General formulation of the problem of unsteady motions

6.2 Uniqueness of the unsteady motions in bounded domains6.3 Outline of the Fourier transform technique; 6.4 Motions due to disturbances originating at the surface; 6.5 Application of Kelvin's method of stationary phase; 6.6 Discussion of the motion of the free surface due to disturbances initiated when the water is at rest; 6.7 Waves due to a periodic impulse applied to the water when initially at rest. Derivation of the radiation condition for purely periodic waves; 6.8 Justification of the method of stationary phase

6.9 A time-dependent Green's function. Uniqueness of unsteady motions in unbounded domains when obstacles are presentSubdivision C Waves on a Running Stream. Ship Waves; 7. Two-dimensional Waves on a Running Stream in Water of Uniform Depth; 7.1 Steady motions in water of infinite depth with p = 0 on the free surface; 7.2 Steady motions in water of infinite depth with a disturbing pressure on the free surface; 7.3 Steady waves in water of constant finite depth; 7.4 Unsteady waves created by a disturbance on the surface of a running stream

8. Waves Caused by a Moving Pressure Point. Kelvin's Theory of the Wave Pattern created by a Moving Ship

Sommario/riassunto

Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.



3.

Record Nr.

UNISA996386784303316

Autore

Child Josiah, Sir, <1630-1699.>

Titolo

A new discourse of trade [[electronic resource] ] : wherein is recommended several weighty points relating to companies of merchants : the act of navigation, naturalization of strangers, and our woolen manufactures, the ballance of trade and the nature of plantations, and their consequences in relation to the kingdom, are seriously discussed, methods for the employment and maintenance of the poor are proposed, the reduction of interest of money to 4 l. per centum, is recommended, and some proposals for erecting a court of merchants for determining controversies, relating to maritine affairs, and for a law for transferrance of bills of debts, are humbly offered / / by Sir Josiah Child

Pubbl/distr/stampa

London, : Printed and sold by T. Sowle ..., 1698

Descrizione fisica

[48], 238 p

Altri autori (Persone)

CulpeperThomas, Sir,  <1578-1662.>

Soggetti

Balance of trade - England

Great Britain Commerce

Great Britain Economic conditions

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

A small treatise against usury [by Sir Thomas Culpeper]: p. 217-236.

Reproduction of original in Huntington Library.

Sommario/riassunto

eebo-0113