1.

Record Nr.

UNISALENTO991003178129707536

Autore

Danieli, Ludovica

Titolo

C.A.G., territorio e scuola : quando la collaborazione diventa possibile / a cura di Ludovica Danieli, Emilio Majer, Gruppo di lavoro provinciale Scuola - C.A.G.

Pubbl/distr/stampa

s.l. : s.e., stampa 2001

Descrizione fisica

199 p. : ill. ; 24 cm

Collana

Formazione e servizi ; 18

Altri autori (Persone)

Majer, Emilio

Altri autori (Enti)

Gruppo di lavoro provinciale Scuola - C.A.G.

Disciplina

362.7

Soggetti

Scuola e società

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In testa al front.: Provincia di Brescia, Assessorato ai servizi sociali.



2.

Record Nr.

UNISA996203199603316

Autore

Huang Kerson <1928->

Titolo

Quantum field theory : from operators to path integrals / / Kerson Huang

Pubbl/distr/stampa

Weinheim, : Wiley-VCH, c2004

ISBN

1-281-84307-5

9786611843076

3-527-61737-X

3-527-61738-8

Descrizione fisica

1 online resource (448 p.)

Classificazione

421.3

530.14/3

Disciplina

530.143

539.72

Soggetti

Quantum field theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

QUANTUM FIELD THEORY; Contents; Preface; Acknowledgment; 1. Introducing Quantum Fields; 1.1. The Classical String; 1.2. The Quantum String; 1.3. Second Quantization; 1.4. Creation and Annihilation Operators; 1.5. Bose and Fermi Statistics; Problems; References; 2. Scalar Fields; 2.1. Klein-Gordon Equation; 2.2. Real Scalar Field; 2.3. Energy and Momentum; 2.4. Particle Spectrum; 2.5. Continuum Normalization; 2.6. Complex Scalar Field; 2.7. Charge and Antiparticle; 2.8. Microcausality; 2.9. The Feynman Propagator; 2.10. The Wave Functional; 2.11. Functional Operations

2.12. Vacuum Wave Functional2.13. The Φ4 Theory; Problems; 3. Relativistic Fields; 3.1. Lorentz Transformations; 3.2. Minimal Representation: SL(2C); 3.3. The Poincaré Group; 3.4. Scalar, Vector, and Spinor Fields; 3.5. Relativistic Quantum Fields; 3.6. One-Particle States; Problems; Reference; 4. Canonical Formalism; 4.1. Principle of Stationary Action; 4.2. Noether's Theorem; 4.3. Translational Invariance; 4.4. Lorentz Invariance; 4.5. Symmetrized Energy-Momentum Tensor; 4.6. Gauge Invariance; Problems; Reference; 5. Electromagnetic Field; 5.1. Maxwell's Equations



5.2. Covariance of the Classical Theory5.3. Canonical Formalism; 5.4. Quantization in Coulomb Gauge; 5.5. Spin Angular Momentum; 5.6. Intrinsic Parity; 5.7. Transverse Propagator; 5.8. Vacuum Fluctuations; 5.9. The Casimir Effect; 5.10. The Gauge Principle; Problems; References; 6. Dirac Equation; 6.1. Dirac Algebra; 6.2. Wave Functions and Current Density; 6.3. Plane Waves; 6.4. Lorentz Transformations; 6.5. Interpretation of Dirac Matrices; 6.6. External Electromagnetic Field; 6.7. Nonrelativistic Limit; 6.8. Thomas Precession; 6.9. Hole Theory; 6.10. Charge Conjugation

6.11 Massless ParticlesProblems; References; 7. The Dirac Field; 7.1. Quantization of the Dirac Field; 7.2. Feynman Propagator; 7.3. Normal Ordering; 7.4. Electromagnetic Interactions; 7.5. Isospin; 7.6. Parity; 7.7. Charge Conjugation; 7.8. Time Reversal; Problems; Reference; 8. Dynamics of Interacting Fields; 8.1. Time Evolution; 8.2. Interaction Picture; 8.3. Adiabatic Switching; 8.4. Correlation Functions in the Interaction Picture; 8.5. S Matrix and Scattering; 8.6. Scattering Cross Section; 8.7. Potential Scattering; 8.8. Adiabatic Theorem; Problems; References.; 9. Feynman Graphs

9.1. Perturbation Theory9.2. Time-Ordered and Normal Products; 9.3. Wick'sTheorem; 9.4. Feynman Rules for Scalar Theory; 9.5. Types of Feynman Graphs; 9.5.1. Vacuum Graph; 9.5.2. Self-Energy Graph; 9.5.3. Connected Graph; 9.6. Wick Rotation; 9.7. Regularization Schemes; 9.8. Linked-Cluster Theorem; 9.9. Vacuum Graphs; Problems; Reference.; 10. Vacuum Correlation Functions; 10.1. Feynman Rules; 10.2. Reduction Formula; 10.3. The Generating Functional; 10.4. Connected Correlation Functions; 10.5. Lehmann Representation; 10.6. Dyson-Schwinger Equations; 10.7. Bound States

10.8. Bethe-Salpeter Equation

Sommario/riassunto

A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalizatio