|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996198774703316 |
|
|
Autore |
Sainz Miguel A |
|
|
Titolo |
Modal Interval Analysis [[electronic resource] ] : New Tools for Numerical Information / / by Miguel A. Sainz, Joaquim Armengol, Remei Calm, Pau Herrero, Lambert Jorba, Josep Vehi |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2014.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XVI, 316 p. 37 illus., 3 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 2091 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematical analysis |
Analysis (Mathematics) |
Control engineering |
Numerical analysis |
Analysis |
Control and Systems Theory |
Numeric Computing |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intervals -- Modal Intervals -- Modal interval extensions -- Interpretability and optimality -- Interval arithmetic -- Equations and systems -- Twins and f -star algorithm -- Marks -- Intervals of marks -- Some related problems. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents an innovative new approach to interval analysis. Modal Interval Analysis (MIA) is an attempt to go beyond the limitations of classic intervals in terms of their structural, algebraic and logical features. The starting point of MIA is quite simple: It consists in defining a modal interval that attaches a quantifier to a classical interval and in introducing the basic relation of inclusion between modal intervals by means of the inclusion of the sets of predicates they accept. This modal approach introduces interval extensions of the real continuous functions, identifies equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify these equivalences, along with guidelines for arriving at these |
|
|
|
|