1.

Record Nr.

UNISA990005827480203316

Autore

MALAVOLTA, Mariano

Titolo

Cultura scientifica degli antichi / Mariano Malavolta

Pubbl/distr/stampa

Roma : Aracne, 2005

ISBN

88-548-0080-5

Descrizione fisica

170 p. ; 24 cm

Collana

A10 ; 132

Disciplina

509.3

Soggetti

Scienza - Storia

Collocazione

II.6. 1512

II.6. 1512 a

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910254084003321

Autore

Grabchak Michael

Titolo

Tempered stable distributions : stochastic models for multiscale processes / / by Michael Grabchak

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016

ISBN

3-319-24927-4

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (127 p.)

Collana

SpringerBriefs in Mathematics, , 2191-8198

Disciplina

519.24

Soggetti

Probabilities

Economics, Mathematical

Probability Theory and Stochastic Processes

Quantitative Finance

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Preliminaries -- Tempered Stable Distributions -- Limit Theorems for Tempered Stable Distributions -- Multiscale Properties of Tempered Stable Levy Processes -- Parametric Classes -- Applications  -- Epilogue -- References.

Sommario/riassunto

This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions. A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.