1.

Record Nr.

UNISA990003640050203316

Autore

GÖRTEMAKER, Heike B.

Titolo

Eva Braun : vivere con Hitler / Heike B. Görtemaker

Pubbl/distr/stampa

Milano : Mondadori, 2011

ISBN

978-88-04-60463-1

Descrizione fisica

299 p., [8] carte di tav. : ill. ; 23 cm

Collana

Le scie

Disciplina

943.086092

Soggetti

Braun, Eva

Collocazione

X.3.B. 6405

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Traduzione di Francesca Gimelli



2.

Record Nr.

UNISALENTO991002720629707536

Autore

Cumont, Franz

Titolo

L'Égypte des Astrologues / par Franz Cumont

Pubbl/distr/stampa

Bruxelles : Editions Culture et Civilisation, 1982

Descrizione fisica

254 p. ; 24 cm

Disciplina

133

Soggetti

Egitto Astrologia

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

3.

Record Nr.

UNINA9910963019303321

Autore

Taheri Ali

Titolo

Function spaces and partial differential equations . Volume 2 Contemporary analysis / / Ali Taheri, Department of Mathematics, University of Sussex

Pubbl/distr/stampa

Oxford, United Kingdom : , : Oxford University Press, , 2015

©2015

ISBN

9780191047831

019104783X

9780191797712

0191797715

9780191047824

0191047821

Edizione

[First edition.]

Descrizione fisica

1 online resource (523 p.)

Collana

Oxford lecture series in mathematics and its applications ; ; Volume 40-41

Disciplina

515.353

Soggetti

Differential equations, Partial

Function spaces

Mathematical analysis

Equacions en derivades parcials

Espais funcionals

Anàlisi matemàtica

Llibres electrònics



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Preface; Contents of Volume 1; Contents of Volume 2; 1 Harmonic Functions and the Mean-Value Property; 1.1 Spherical Means; 1.2 Mean-Value Property and Smoothness; 1.3 Maximum Principles; 1.4 The Laplace-Beltrami Operator on Spheres; 1.5 Harnack's Monotone Convergence Theorem; 1.6 Interior Estimates and Uniform Gradient Bounds; 1.7 Weyl's Lemma on Weakly Harmonic Functions; 1.8 Exercises and Further Results; 2 Poisson Kernels and Green's Representation Formula; 2.1 The Fundamental Solution N of Δ; 2.2 Green's Identities and Representation Formulas; 2.3 The Green's Function G = G(x,y

Ω)2.4 The Poisson Kernel P = P(x,y;  Ω); 2.5 Explicit Constructions: Balls; 2.6 Explicit Constructions: Half-Spaces; 2.7 The Newtonian Potential N[f;  Ω]; 2.8 Decay of the Newtonian Potential; 2.9 Second Order Derivatives and  ΔN[f;  Ω]; 2.10 Exercises and Further Results; 3 Abel-Poisson and Fejér Means of Fourier Series; 3.1 Function Spaces on the Circle; 3.2 Conjugate Series;  Magnitude of Fourier Coefficients; 3.3 Summability Methods;  Tauberian Theorems; 3.4 Abel-Poisson vs. Fejér Means of Fourier Series; 3.5 L1(T) and M(T) as Convolution Banach Algebras

6.10 Exercises and Further Results

Sommario/riassunto

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seeminglyunrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hi