| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA990003640050203316 |
|
|
Autore |
GÖRTEMAKER, Heike B. |
|
|
Titolo |
Eva Braun : vivere con Hitler / Heike B. Görtemaker |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
299 p., [8] carte di tav. : ill. ; 23 cm |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Traduzione di Francesca Gimelli |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNISALENTO991002720629707536 |
|
|
Autore |
Cumont, Franz |
|
|
Titolo |
L'Égypte des Astrologues / par Franz Cumont |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Bruxelles : Editions Culture et Civilisation, 1982 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
3. |
Record Nr. |
UNINA9910963019303321 |
|
|
Autore |
Taheri Ali |
|
|
Titolo |
Function spaces and partial differential equations . Volume 2 Contemporary analysis / / Ali Taheri, Department of Mathematics, University of Sussex |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford, United Kingdom : , : Oxford University Press, , 2015 |
|
©2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9780191047831 |
019104783X |
9780191797712 |
0191797715 |
9780191047824 |
0191047821 |
|
|
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (523 p.) |
|
|
|
|
|
|
Collana |
|
Oxford lecture series in mathematics and its applications ; ; Volume 40-41 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Partial |
Function spaces |
Mathematical analysis |
Equacions en derivades parcials |
Espais funcionals |
Anàlisi matemàtica |
Llibres electrònics |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Preface; Contents of Volume 1; Contents of Volume 2; 1 Harmonic Functions and the Mean-Value Property; 1.1 Spherical Means; 1.2 Mean-Value Property and Smoothness; 1.3 Maximum Principles; 1.4 The Laplace-Beltrami Operator on Spheres; 1.5 Harnack's Monotone Convergence Theorem; 1.6 Interior Estimates and Uniform Gradient Bounds; 1.7 Weyl's Lemma on Weakly Harmonic Functions; 1.8 Exercises and Further Results; 2 Poisson Kernels and Green's Representation Formula; 2.1 The Fundamental Solution N of Δ; 2.2 Green's Identities and Representation Formulas; 2.3 The Green's Function G = G(x,y |
Ω)2.4 The Poisson Kernel P = P(x,y; Ω); 2.5 Explicit Constructions: Balls; 2.6 Explicit Constructions: Half-Spaces; 2.7 The Newtonian Potential N[f; Ω]; 2.8 Decay of the Newtonian Potential; 2.9 Second Order Derivatives and ΔN[f; Ω]; 2.10 Exercises and Further Results; 3 Abel-Poisson and Fejér Means of Fourier Series; 3.1 Function Spaces on the Circle; 3.2 Conjugate Series; Magnitude of Fourier Coefficients; 3.3 Summability Methods; Tauberian Theorems; 3.4 Abel-Poisson vs. Fejér Means of Fourier Series; 3.5 L1(T) and M(T) as Convolution Banach Algebras |
6.10 Exercises and Further Results |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seeminglyunrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hi |
|
|
|
|
|
|
|
| |