1.

Record Nr.

UNISA990003254210203316

Autore

CHAMBERS, Ll. G.

Titolo

Integral equations: a short course / Ll. G. Chambers ; consulting editor: professor A. Jeffrey

Pubbl/distr/stampa

London : International textbook, copyr. 1976

ISBN

0-7002-0262-5

Descrizione fisica

198 p. ; 23 cm

Disciplina

515.45

Soggetti

Equazioni integrali

Collocazione

515.45 CHA

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910483789103321

Autore

Yalçın Müştak E

Titolo

Reconfigurable Cellular Neural Networks and Their Applications / / by Müştak E. Yalçın, Tuba Ayhan, Ramazan Yeniçeri

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020

ISBN

3-030-17840-4

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (79 pages)

Collana

SpringerBriefs in Nonlinear Circuits, , 2520-1433

Disciplina

006.32

Soggetti

Computational intelligence

Artificial intelligence

Electronic circuits

Computational Intelligence

Artificial Intelligence

Electronic Circuits and Devices

Circuits and Systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Artificial Neural Network Models -- Artificial Olfaction System -- Implementations of CNNs -- Index.

Sommario/riassunto

This book explores how neural networks can be designed to analyze sensory data in a way that mimics natural systems. It introduces readers to the cellular neural network (CNN) and formulates it to match the behavior of the Wilson–Cowan model. In turn, two properties that are vital in nature are added to the CNN to help it more accurately deliver mimetic behavior: randomness of connection, and the presence of different dynamics (excitatory and inhibitory) within the same network. It uses an ID matrix to determine the location of excitatory and inhibitory neurons, and to reconfigure the network to optimize its topology. The book demonstrates that reconfiguring a single-layer CNN is an easier and more flexible solution than the procedure required in a multilayer CNN, in which excitatory and inhibitory neurons are separate, and that the key CNN criteria of a spatially invariant template and local coupling are fulfilled. In closing, the application of the authors’ neuron population model as a feature extractor is exemplified using odor and electroencephalogram classification.