1.

Record Nr.

UNISA990003134930203316

Titolo

I contratti per l'acquisizione delle risorse elettroniche (RE) in biblioteca : atti della giornata di studio, Roma, LUMSA, 3 maggio 2006 / a cura di Cinzia Fortuzzi e Giulio Marconi ; prefazione di Walter Capezzali ; testi di G. Mazzitelli [et al.]

Pubbl/distr/stampa

Roma, : Associazione italiana biblioteche, Sezione Lazio, 2007

ISBN

978-88-7812-185-0

Descrizione fisica

182 p. ; 21 cm

Disciplina

025.284

Soggetti

Biblioteche - Risorse elettroniche - Acquisto - Atti di congressi

Collocazione

I.2.B. 645

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In testa al frontespizio: Associazione italiana biblioteche, Sezione Lazio-Gbasi-Gibas

In copertina: Giornata mondiale del libro e del diritto d'autore 2006 promossa da Commissione nazionale italiana



2.

Record Nr.

UNINA9910404090703321

Autore

Suñé Jordi

Titolo

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Pubbl/distr/stampa

MDPI - Multidisciplinary Digital Publishing Institute, 2020

ISBN

3-03928-577-7

Descrizione fisica

1 online resource (244 p.)

Soggetti

History of engineering and technology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.