1.

Record Nr.

UNISA990002897200203316

Titolo

Contabilità e bilancio : esercizi / Buso, ...[et al.]

Pubbl/distr/stampa

Milano : Egea, 2005

ISBN

88-238-2046-4

Edizione

[2. rist.]

Descrizione fisica

374 p. ; 24 cm

Disciplina

657.076

Soggetti

Contabilità - Esercizi

Collocazione

P09 478

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910983305303321

Autore

Liu Zhen (Leo)

Titolo

Artificial Intelligence for Engineers : Basics and Implementations / / by Zhen "Leo" Liu

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031759536

3031759532

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (719 pages)

Disciplina

621.3815

Soggetti

Electronic circuit design

Computational intelligence

Machine learning

Electronics Design and Verification

Computational Intelligence

Machine Learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di contenuto

Preparation Knowledge: Basics of AI -- Tools for Artificial Intelligence -- Linear Models -- Decision Trees -- Support Vector Machine -- Bayesian Algorithms -- Artificial Neural Network -- Deep Learning -- Ensemble Learning -- Clustering -- Dimension Reduction -- Anomaly Detection -- Association Rule Leaming -- Basics of and Value-Based Reinforcement Learning -- Policy-Based Reinforcement Learning.

Sommario/riassunto

This textbook presents basic knowledge and essential toolsets needed for people who want to step into artificial intelligence (AI). The book is especially suitable for those college students, graduate students, instructors, and IT hobbyists who have an engineering mindset. That is, it serves the idea of getting the job done quickly and neatly with an adequate understanding of why and how. It is designed to allow one to obtain a big picture for both AI and essential AI topics within the shortest amount of time. Designed for a typical undergraduate, graduate, or dual-listed course with a semester-based calendar; Puts theory in context, so readers gain knowledge about the most essential concepts and algorithms; Covers essential terms, algorithms, and useful tools for learning and performing contemporary AI. Extra information is available at AI-engineer.org.