1.

Record Nr.

UNISA990002823220203316

Titolo

5. : Legazioni di Romagna, 1512-1699 / introduzione di Gianni Guadalupi

Pubbl/distr/stampa

Milano, : F. M. Ricci, copyr. 2001

ISBN

88-216-1112-4

Descrizione fisica

275 p. : ill. ; 27 cm

Collana

Signorie & principati

Disciplina

945.6

Soggetti

Stato della Chiesa - Sec. 15.-17

Collocazione

X.2.A. 451/17.5

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In custodia



2.

Record Nr.

UNINA9910508455703321

Autore

Zagidullina Aygul

Titolo

High-Dimensional Covariance Matrix Estimation : An Introduction to Random Matrix Theory / / by Aygul Zagidullina

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021

ISBN

9783030800659

3030800652

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (123 pages)

Collana

SpringerBriefs in Applied Statistics and Econometrics, , 2524-4124

Disciplina

512.9434

Soggetti

Statistics

Econometrics

Big data

Machine learning

Statistics in Business, Management, Economics, Finance, Insurance

Big Data

Statistical Theory and Methods

Machine Learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Foreword -- 1 Introduction -- 2 Traditional Estimators and Standard Asymptotics -- 3 Finite Sample Performance of Traditional Estimators -- 4 Traditional Estimators and High-Dimensional Asymptotics -- 5 Summary and Outlook -- Appendices.

Sommario/riassunto

This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians,



econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.