1.

Record Nr.

UNISA990002104510203316

Autore

DOSSETTI, Maria

Titolo

L' amministratore di sostegno e la nuova disciplina dell'interdizione e dell'inabilitazione : L. 9 gennaio 2004, n.6 / Maria Dossetti, Mimma Moretti, Carola Moretti

Pubbl/distr/stampa

[Milanofiori, Assago] : IPSOA, 2004

ISBN

88-217-2019-5

Descrizione fisica

XIII, 363 p. ; 24 cm

Collana

Prima lettura ; 14

Altri autori (Persone)

MORETTI, Mimma

MORETTI, Carola

Disciplina

344.450324

Soggetti

Minorati - Assistenza - Legislazione

Collocazione

COLL PUT 14

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISA990001940590203316

Autore

AGNETTA GENTILE, Francesco

Titolo

Della donazione per diritto privato internazionale / Francesco Agnetta Gentile

Pubbl/distr/stampa

Palermo : Tipografia dello Statuto, 1881

Descrizione fisica

323 p. ; 22 cm

Collocazione

IG VIII 22 115

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

3.

Record Nr.

UNISA996499872203316

Autore

Unpingco José <1969->

Titolo

Python for Probability, Statistics, and Machine Learning [[electronic resource] /] / by José Unpingco

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

9783031046483

9783031046476

Edizione

[3rd ed. 2022.]

Descrizione fisica

1 online resource (524 pages)

Disciplina

006.31

Soggetti

Telecommunication

Computer science - Mathematics

Mathematical statistics

Engineering mathematics

Engineering - Data processing

Statistics

Data mining

Communications Engineering, Networks

Probability and Statistics in Computer Science

Mathematical and Computational Engineering Applications

Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences

Data Mining and Knowledge Discovery

Python (Llenguatge de programació)

Aprenentatge automàtic



Probabilitats

Processament de dades

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Part 1 Getting Started with Scientific Python -- Installation and Setup -- Numpy -- Matplotlib -- Ipython -- Jupyter Notebook -- Scipy -- Pandas -- Sympy -- Interfacing with Compiled Libraries -- Integrated Development Environments -- Quick Guide to Performance and Parallel Programming -- Other Resources -- Part 2 Probability -- Introduction -- Projection Methods -- Conditional Expectation as Projection -- Conditional Expectation and Mean Squared Error -- Worked Examples of Conditional Expectation and Mean Square Error Optimization -- Useful Distributions -- Information Entropy -- Moment Generating Functions -- Monte Carlo Sampling Methods -- Useful Inequalities -- Part 3 Statistics -- Python Modules for Statistics -- Types of Convergence -- Estimation Using Maximum Likelihood -- Hypothesis Testing and P-Values -- Confidence Intervals -- Linear Regression -- Maximum A-Posteriori -- Robust Statistics -- Bootstrapping -- Gauss Markov -- Nonparametric Methods -- Survival Analysis -- Part 4 Machine Learning -- Introduction -- Python Machine Learning Modules -- Theory of Learning -- Decision Trees -- Boosting Trees -- Logistic Regression -- Generalized Linear Models -- Regularization -- Support Vector Machines -- Dimensionality Reduction -- Clustering -- Ensemble Methods -- Deep Learning -- Notation -- References -- Index.

Sommario/riassunto

Using a novel integration of mathematics and Python codes, this book illustrates the fundamental concepts that link probability, statistics, and machine learning, so that the reader can not only employ statistical and machine learning models using modern Python modules, but also understand their relative strengths and weaknesses. To clearly connect theoretical concepts to practical implementations, the author provides many worked-out examples along with "Programming Tips" that encourage the reader to write quality Python code. The entire text, including all the figures and numerical results, is reproducible using the Python codes provided, thus enabling readers to follow along by experimenting with the same code on their own computers. Modern Python modules like Pandas, Sympy, Scikit-learn, Statsmodels, Scipy, Xarray, Tensorflow, and Keras are used to implement and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, interpretability, and regularization. Many abstract mathematical ideas, such as modes of convergence in probability, are explained and illustrated with concrete numerical examples. This book is suitable for anyone with undergraduate-level experience with probability, statistics, or machine learning and with rudimentary knowledge of Python programming. · Features a novel combination of modern Python implementations and underlying mathematics to illustrate and visualize the foundational ideas of probability, statistics, and machine learning; · Includes meticulously worked-out numerical



examples, all reproducible using the Python code provided in the text, that compute and visualize statistical and machine learning models thus enabling the reader to not only implement these models but understand their inherent trade-offs; · Utilizes modern Python modules such as Statsmodels, Tensorflow, Keras, Sympy, and Scikit-learn, along with embedded "Programming Tips" to encourage readers to develop quality Python codes that implement and illustrate practical concepts.