| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA990001699110203316 |
|
|
Autore |
JOHNSON, A. H. |
|
|
Titolo |
Whitehead's theory of reality / A. H. Johnson |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York : Dover publications, 1962 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910961074703321 |
|
|
Autore |
Isidori Alberto |
|
|
Titolo |
Nonlinear Control Systems II / / by Alberto Isidori |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London : , : Springer London : , : Imprint : Springer, , 1999 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1999.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 293 p.) |
|
|
|
|
|
|
Collana |
|
Communications and Control Engineering, , 2197-7119 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Automatic control |
System theory |
Control theory |
Multibody systems |
Vibration |
Mechanics, Applied |
Electrical engineering |
Engineering mathematics |
Engineering - Data processing |
Mathematical optimization |
Calculus of variations |
Control and Systems Theory |
Systems Theory, Control |
Multibody Systems and Mechanical Vibrations |
Electrical and Electronic Engineering |
Mathematical and Computational Engineering Applications |
Calculus of Variations and Optimization |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
10. Stability of Interconnected Nonlinear Systems -- 10.1 Preliminaries -- 10.2 Asymptotic Stability and Small Perturbations -- 10.3 Asymptotic Stability of Cascade-Connected Systems -- 10.4 Input-to-State Stability -- 10.5 Input-to-State Stability of Cascade-Connected Systems -- 10.6 The “Small-Gain” Theorem for Input-to-State Stable Systems -- 10.7 Dissipative Systems -- 10.8 Stability of Interconnected Dissipative Systems -- 10.9 Dissipative Linear Systems -- 11. Feedback Design for Robust Global Stability -- 11.1 Preliminaries -- 11.2 Stabilization via Partial State Feedback: a Special Case -- 11.3 Stabilization via Output Feedback: a Special Case -- 11.4 Stabilization of Systems in Lower Triangular Form -- 11.5 Design for Multi-Input Systems -- 12. Feedback Design for Robust Semiglobal Stability -- 12.1 Achieving Semiglobal and Practical Stability -- 12.2 Semiglobal Stabilization via Partial State Feedback -- 12.3 A Proof of Theorem 9.6.2 -- 12.4 Stabilization of Minimum-Phase Systems in Lower-Triangular Form -- 12.5 Stabilization via Output Feedback Without a Separation Principle -- 12.6 Stabilization via Output Feedback of Non-Minimum-Phase Systems -- 12.7 Examples -- 13. Disturbance Attenuation -- 13.1 Robust Stability via Disturbance Attenuation -- 13.2 The Case of Linear Systems -- 13.3 Disturbance Attenuation -- 13.4 Almost Disturbance Decoupling -- 13.5 An Estimate of the Minimal Level of Disturbance Attenuation -- 13.6L2-gain Design for Linear Systems -- 13.7 GlobalL2-gain Design for a Class of Nonlinear Systems -- 14. Stabilization Using Small Inputs -- 14.1 Achieving Global Stability via Small Inputs -- 14.2 Stabilization of Systems in Upper Triangular Form -- 14.3 Stabilization Using Saturation Functions -- 14.4 Applications and Extensions -- Bibliographical Notes -- References. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book incorporates recent advances in the design of feedback laws to the purpose of globally stabilizing nonlinear systems via state or output feedback. It is a continuation of the first volume by Alberto Isidori on Nonlinear Control Systems. Specifically this second volume will cover: • Stability analysis of interconnected nonlinear systems. The notion of Input-to-State stability and its role in analysing stability of cascade-connected or feedback-connected systems. The notion of dissipativity and its consequences (passivity and "gain"). • Robust stabilization in the case of parametric uncertainties. The case of state feedback: global or semi-global stabilization. The case of output feedback: semi-global stabilization. • Robust stabilization in the case of unstructured perturbations. Feedback design via the small-gain approach. Robust semi-global stabilization via output feedback. • Methods for asymptotic tracking, disturbance rejection and model following. Global and semi-global analysis. • Normal forms for multi-input multi-output nonlinear systems form a global point of view. Their role in feedback design. |
|
|
|
|
|
|
|
| |