1.

Record Nr.

UNISA990001570160203316

Autore

GENTILI, Bruno <1915-2014>

Titolo

Poesia e pubblico nella Grecia antica : da Omero al 5. secolo / Bruno Gentili

Pubbl/distr/stampa

Bari, : Laterza, 1984

Descrizione fisica

VIII, 414 p. : ill. ; 20 cm

Collana

Collezione storica

Disciplina

881

Soggetti

Poesia greca

Letteratura e società - Grecia antica

Collocazione

V.1.B. 90(III A coll 36/26)

V.1.B. 90 a(III A coll 36/26a)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910728952603321

Autore

Fauzi Rizky Reza

Titolo

Statistical Inference Based on Kernel Distribution Function Estimators / / by Rizky Reza Fauzi, Yoshihiko Maesono

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023

ISBN

9789819918621

9819918626

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (103 pages)

Collana

JSS Research Series in Statistics, , 2364-0065

Altri autori (Persone)

MaesonoYoshihiko

Disciplina

519.5

Soggetti

Statistics

Nonparametric statistics

Mathematical statistics

Statistical Theory and Methods

Applied Statistics

Non-parametric Inference

Mathematical Statistics

Estadística matemàtica

Funcions de Kernel

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Kernel density estimator -- Kernel distribution estimator -- Quantile estimation -- Nonparametric tests -- Mean residual life estimator.

Sommario/riassunto

This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth



estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved—that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.