| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA990001470500203316 |
|
|
Titolo |
Antonio Vallisneri : l'edizione del testo scentifico d'età moderna : atti del Seminario di studi, Scandiano, 12-13 ottobre 2001 / a cura di Maria Teresa Monti |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Firenze : Leo S. Olschki, 2003 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Biblioteca di storia della scienza / Centro studi Lazzaro Spallanzani di Scandiano ; 47 |
Saggi ; 8 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Vallisnieri, Antonio Opere Scandiano 2001 |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910777496103321 |
|
|
Autore |
Flicker Yuval Z (Yuval Zvi), <1955-> |
|
|
Titolo |
Automorphic representations of low rank groups [[electronic resource] /] / Yuval Z. Flicker |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hackensack, N.J., : World Scientific, c2006 |
|
|
|
|
|
|
|
ISBN |
|
1-281-92488-1 |
9786611924881 |
981-277-362-2 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xi, 485 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Representations of groups |
Unitary groups |
Lifting theory |
Automorphic forms |
Trace formulas |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- pt. 1. On the symmetric square lifting introduction. 1. Functoriality and norms. 1.1. Hecke algebra. 1.2. Norms. 1.3. Local lifting. 1.4. Orthogonality. II. Orbital integrals. II.1. Fundamental lemma. II.2. Differential forms. II.3. Matching orbital integrals. II.4. Germ expansion. III. Twisted trace formula. III.1. Geometric side. III.2. Analytic side. III.3. Trace formulae. IV. Total global comparison. IV. Total global comparison. IV.1. The comparison. IV.2. Appendix: Mathematica program. V. Applications of a trace formula. V.1. Approximation. V.2. Main theorems. V.3. Characters and genericity. VI. Computation of a twisted character. VI.1. Proof of theorem, anisotropic case. VI.2. Proof of theorem, isotropic case -- pt. 2. Automorphic representations of the unitary group U(3,E/F) introduction. 1. Functorial overview. 2. Statement of results. I. Local theory. I.1. Conjugacy classes. I.2. Orbital integrals. I.3. Fundamental lemma. I.4. Admissible representations. I.5. Representations of U(2,1;C/R). 1.6. Fundamental lemma again. II. Trace formula. II.1. Stable trace formula. II.2. Twisted trace formula. II.3. Restricted comparison. II.4. Trace identity. II.5. The |
|
|
|
|
|
|
|
|
|
|
[symbol]-endo-lifting e'. II.6. The quasi-endo-lifting e. II.7. Unitary symmetric square. III. Liftings and packets. III.1. Local identity. III.2. Separation. III.3. Specific lifts. III.4. Whittaker models and twisted characters. III.5. Global lifting. III.6. Concluding remarks -- pt. 3. Zeta functions of Shimura varieties of U(3) introduction. 1. Statement of results. 2. The zeta function. I. Preliminaries. I.1. The Shumira variety. I.2. Decomposition of cohomology. I.3. Galois representations. II. Automorphic representations. II.1. Stabilization and the test function. II.2. Functorial overview of basechange for U(3). II.3. Local results on basechange for U(3). II.4. Global results on basechange for U(3). II.5. Spectral side of the stable trace formula. II.6. Proper endoscopic group. III. Local terms. III.1. The reflex field. III.2. The representation of the dual group. III.3. Local terms at p. III.4. The eigenvalues at p. III.5. Terms at p for the endoscopic group. IV. Real representations. IV.1. Representations of the real GL(2). IV.2. Representations of U(2,l). IV.3. Finite-dimensional representations. V. Galois representations. V.1. Stable case. V.2. Unstable case. V.3. Nontempered case. |
|
|
|
|
|
| |