1.

Record Nr.

UNINA9910455562003321

Autore

Cushman Richard H. <1942->

Titolo

Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki

Pubbl/distr/stampa

Singapore ; ; Hackensack, NJ, : World Scientific, c2010

ISBN

1-282-76167-6

9786612761676

981-4289-49-3

Descrizione fisica

1 online resource (421 p.)

Collana

Advanced series in nonlinear dynamics ; ; v. 26

Altri autori (Persone)

DuistermaatJ. J <1942-> (Johannes Jisse)

ŚniatyckiJędrzej

Disciplina

516.3/6

Soggetti

Nonholonomic dynamical systems

Geometry, Differential

Rigidity (Geometry)

Caratheodory measure

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 387-393) and index.

Nota di contenuto

Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and  in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations

1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5



Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space

2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action

3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria

4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits

4.3.3 Runaway relative period orbits

Sommario/riassunto

This book gives a modern differential geometric treatment of linearly nonholonomically constrained systems. It discusses in detail what is meant by symmetry of such a system and gives a general theory of how to reduce such a symmetry using the concept of a differential space and the almost Poisson bracket structure of its algebra of smooth functions. The above theory is applied to the concrete example of Carathéodory's sleigh and the convex rolling rigid body. The qualitative behavior of the motion of the rolling disk is treated exhaustively and in detail. In particular, it classifies all mot



2.

Record Nr.

UNISA990000974510203316

Autore

ZAGANELLI, Gioia

Titolo

Aimer, sofrir, joir : i paradigmi della soggettività nella lirica francese dei secoli XII e XIII / Gioia Zaganelli

Pubbl/distr/stampa

Firenze, : La nuova Italia, 1982

Descrizione fisica

302 p ; 21 cm

Collana

Pubblicazioni della Facoltà di magistero / Università di Bologna , N. S

Disciplina

841.109

Soggetti

Poesia lirica francese - Sec. 12.-13

Collocazione

VI.4.B. 506(II f C 436)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

3.

Record Nr.

UNINA9910337877503321

Autore

Schirrmacher Arne

Titolo

Establishing Quantum Physics in Göttingen : David Hilbert, Max Born, and Peter Debye in Context, 1900-1926 / / by Arne Schirrmacher

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019

ISBN

3-030-22727-8

Edizione

[1st ed. 2019.]

Descrizione fisica

1 online resource (128 pages)

Collana

SpringerBriefs in History of Science and Technology, , 2211-4564

Disciplina

530.12

530.12072

Soggetti

Physics

Quantum theory

History

History and Philosophical Foundations of Physics

Quantum Physics

History of Science

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Situating Göttingen in the History of Quantum Physics: A Contextual Approach -- From Generational Change to Scientific Opportunity -- “Hilbert and Physics” — Vision and Resources -- The Born “Schools” in Berlin, Frankfurt and Göttingen -- Göttingen’s Multiple Avenues Towards Quantum Mechanics -- Appendix: Selected Documents. .

Sommario/riassunto

Quantum mechanics – the grandiose theory that describes nature down to the submicroscopic level – was first formulated in Göttingen in 1925. How did this come about and why is it that Göttingen became the pre-eminent location for a revolution in physics? This book is the first to investigate the wide range of factors that were pivotal for quantum physics to be established in Göttingen. These include the process of generational change of physics professors, the hopes of mathematicians seeking new fields of research, and a new understanding of the interplay of experiment, theory and philosophy.