| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA990000555090203316 |
|
|
Autore |
EDWARDS, Franklin R. |
|
|
Titolo |
Futures and options / Franklin R. Edwards, Cindy W. Ma |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York : McGraw-Hill, 1992 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
McGraw-Hill series in financa |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Operazioni a premio |
Mercati a termine |
|
|
|
|
|
|
|
|
Collocazione |
|
332.645 EDW 1 (IRA 30 54) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910797363803321 |
|
|
Titolo |
Directed self-assembly of block co-polymers for nano-manufacturing / / edited by Roel Gronheid and Paul Nealey |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Amsterdam, Netherlands : , : Woodhead Publishing, , 2015 |
|
©2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-08-100261-0 |
0-08-100250-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (328 p.) |
|
|
|
|
|
|
Collana |
|
Woodhead Publishing series in electronic and optical materials ; ; Number 83 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Block copolymers |
Self-assembly (Chemistry) |
Nanomanufacturing |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters and index. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; Directed Self-assembly of Block Copolymers for Nano-manufacturing; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Part One: Physics and chemistry of block copolymer (BCP) materials ; Chapter 1: Physics of block copolymers from bulk to thin films; 1.1 . Introduction; 1.2 . Order-disorder transition of block copolymers; 1.2.1 . Disordered state; 1.2.2 . Weak segregation limit in ordered state; 1.2.3 . Strong segregation limit in ordered state; 1.2.4 . Phase diagram obtained by using self-consistent field theory |
1.3 . Morphologies of diblock copolymer/homopolymer mixtures1.4 . Dynamics of phase transition in block copolymers; 1.5 . Structures of block copolymer in thin films; 1.5.1 . Free energy of block copolymer thin film; 1.5.2 . Effect of surface energy term; F surface ; 1.5.3 . Effect of bulk energy term F bulk ; 1.6 . Conclusion; References; Chapter 2: RAFT synthesis of block copolymers and their self-assembly properties; 2.1 . RAFT process description; 2.2 . Polymerization process details; 2.2.1 . In situ process analysis; 2.3 . RAFT end-group catalytic radical reduction |
|
|
|
|
|
|
|
|
|
|
|
2.4 . Block Copolymer In situ Topcoat Applications2.5 . DSA Applications; 2.6 . High chi block copolymers; 2.7 . Conclusions; Acknowledgments; References; Chapter 3: Thermal and solvent annealing of block copolymer films; 3.1 . Introduction; 3.2 . Thermal annealing of BCPs films; 3.2.1 . Fundamental consideration; 3.2.2 . Film thickness effect and temperature gradient; 3.2.3 . Crystallization behavior induced by thermal annealing; 3.3 . Solvent annealing of BCPs films; 3.3.1 . Fundamental consideration; 3.3.2 . Factors affecting the annealing process |
3.3.3 . Combination of solvent annealing and thermal annealing3.4 . Summary and outlook; References; Chapter 4: Field-theoretic simulations and self-consistent field theory for studying block copolymer directed self-assembly; 4.1 Introduction; 4.2 Overview of field-theory-based simulations of block copolymer DSA; 4.3 Chemoepitaxy modeling; 4.4 Graphoepitaxy modeling; 4.4.1 Cylinders in a rectangular trench; 4.4.2 Contact hole shrink; 4.5 Summary and outlook; References; Part Two: Templates and patterning for directed self-assembly |
Chapter 5: Directed self-oriented self-assembly of block copolymers using topographical surfaces5.1 . Introduction; 5.2 . Control of interfacial interactions; 5.3 . Graphoepitaxy; 5.3.1 . Fabrication of topographical surfaces; 5.3.2 . Geometry with deep patterning; 5.3.2.1 . Deep trench surfaces; 5.3.2.2 . Post surfaces; 5.3.2.3 . Other surfaces; 5.3.3 . Geometry with minimal patterning; 5.3.3.1 . Faceted surfaces; 5.3.3.2 . Shallow trench surfaces; 5.4 . Application of BCPs guided by topographical surfaces; 5.5 . Summary and outlook; References |
Chapter 6: Directed self-oriented self-assembly of block copolymers using chemically modified surfaces |
|
|
|
|
|
|
Sommario/riassunto |
|
The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new |
|
|
|
|
|
|
|
| |