|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910788843503321 |
|
|
Autore |
Palmieri John H (John Harold), <1964-> |
|
|
Titolo |
Stable homotopy over the Steenrod algebra / / John H. Palmieri |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2001 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (193 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 716 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Homotopy theory |
Steenrod algebra |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 151, number 716 (second of 5 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""List of Figures""; ""Preface""; ""Chapter 0. Preliminaries""; ""0.1. Grading and other conventions""; ""0.2. Hopf algebras""; ""0.3. Modules and comodules""; ""0.4. Homological algebra""; ""0.5. Two small examples""; ""Chapter 1. Stable homotopy over a Hopf algebra""; ""1.1. The category Stable(Î?)""; ""1.2. The functor H""; ""1.2.1. Remarks on Hopf algebra extensions""; ""1.3. Some classical homotopy theory""; ""1.4. The Adams spectral sequence""; ""1.5. Bousfield classes and Brown-Comenetz duality""; ""1.6. Further discussion"" |
""Chapter 2. Basic properties of the Steenrod algebra""""2.1. Quotient Hopf algebras of A""; ""2.1.1. Quasi-elementary quotients of A""; ""2.2. P[sup(s)][sub(t)]-homology""; ""2.2.1. Miscellaneous results about P[sup(s)][sub(t)]-homology""; ""2.3. Vanishing lines for homotopy groups""; ""2.3.1. Proof of Theorems 2.3.1 and 2.3.2 when p = 2""; ""2.3.2. Changes necessary when p is odd""; ""2.4. Self-maps via vanishing lines""; ""2.5. Construction of spectra of specified type""; ""2.6. Further discussion""; ""Chapter 3. Chromatic structure""; ""3.1. Margolis' killing construction"" |
""3.2. A Tate version of the functor H""""3.3. Chromatic convergence""; ""3.4. Further discussion: work of Mahowald and Shick""; ""3.5. Further discussion""; ""Chapter 4. Computing Ext with elements inverted""; ""4.1. The q[sub(n)]-based Adams spectral sequence""; ""4.2. The Q[sub(n)]-based Adams spectral sequence""; ""4.3. A(n) as an A-comodule""; |
|
|
|
|