1.

Record Nr.

UNISA990000536710203316

Autore

REZZONICO, Silvio

Titolo

Manuale delle locazioni : locazioni abitative e ad uso diverso dopo la legge di riforma n.431/1998 : modelli contrattuali per i canali libero e convenzionato, prontuario normativo, rassegna di giurisprudenza, formulario e quadri di sintesi / Silvio Rezzonico, Matteo Rezzonico

Pubbl/distr/stampa

Milano : Il sole 24 ore, copyr.2001

ISBN

88-324-4270-1

Descrizione fisica

XIV, 627 p. ; 24 cm

Collana

Locazione e condominio

Altri autori (Persone)

REZZONICO, Matteo

Disciplina

346.450434

Soggetti

Locazione - Legislazione

Collocazione

XXV.1.H. 688 (IG I 1747)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910903799003321

Autore

Luo Albert C. J

Titolo

Two-dimensional Single-Variable Cubic Nonlinear Systems, Vol. I : A Self-univariate Cubic Vector Field / / by Albert C. J. Luo

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN

3-031-48472-X

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (442 pages)

Disciplina

003.75

Soggetti

Engineering mathematics

Mechanics, Applied

Dynamics

Nonlinear theories

System theory

Engineering Mathematics

Engineering Mechanics

Applied Dynamical Systems

Complex Systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1 Constant and Self-cubic Vector fields -- Chapter 2 Crossing-linear and Self-cubic Vector Fields -- Chapter 3 Crossing-quadratic and Self-Cubic Vector Fields -- Chapter 4 Two Single-variable Cubic Vector Fields.

Sommario/riassunto

This book, the first of 15 related monographs, presents systematically a theory of cubic nonlinear systems with single-variable vector fields. The cubic vector fields are of self-variables and are discussed as the first part of the book. The 1-dimensional flow singularity and bifurcations are discussed in such cubic systems. The appearing and switching bifurcations of the 1-dimensional flows in such 2-dimensional cubic systems are for the first time to be presented. Third-order source and sink flows are presented, and the third-order parabola flows are also presented. The infinite-equilibriums are the switching bifurcations for the first and third-order source and sink



flows, and the second-order saddle flows with the first and third-order parabola flows, and the inflection flows. The appearing bifurcations in such cubic systems includes saddle flows and third-order source (sink) flows, inflection flows and third-order up (down)-parabola flows. Develops the theory for 1-dimensonal flow singularity and bifurcations to elucidate dynamics of nonlinear systems; Provides a new research direction in nonlinear dynamics community; Shows how singularity and bifurcations occur not only for equilibriums and attractors but also for 1-dimensional flows.