1.

Record Nr.

UNISA990000235520203316

Autore

Krantz, Steven G.

Titolo

Real analysis and foundations / Steven G. Krantz

Pubbl/distr/stampa

Boca Raton [etc.] : CRC Press, copyr. 1991

ISBN

0-8493-7156-2

Descrizione fisica

XIV, 295 p. : ill. ; 24 cm

Collana

Studies in advanced mathematics ; 0

Disciplina

515

Collocazione

515 KRA

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910781165603321

Autore

Cook Stephen <1948->

Titolo

Logical foundations of proof complexity / / Stephen Cook, Phuong Nguyen [[electronic resource]]

Pubbl/distr/stampa

Cambridge : , : Cambridge University Press, , 2010

ISBN

1-107-20671-5

1-282-53611-7

9786612536113

0-511-67967-X

0-511-67842-8

0-511-68165-8

0-511-67716-2

0-511-67627-1

0-511-68363-4

Descrizione fisica

1 online resource (xv, 479 pages) : digital, PDF file(s)

Collana

Perspectives in logic

Disciplina

511.3/6

Soggetti

Computational complexity

Proof theory

Logic, Symbolic and mathematical



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Half-title; Series-title; Title; Copyright; CONTENTS; PREFACE; Chapter I: INTRODUCTION; Chapter II: THE PREDICATE CALCULUS AND THE SYSTEM LK; Chapter III: PEANO ARITHMETIC AND ITS SUBSYSTEMS; Chapter IV: TWO-SORTED LOGIC AND COMPLEXITY CLASSES; Chapter V: THE THEORY V0 AND AC0; Chapter VI: THE THEORY V1 AND POLYNOMIAL TIME; Chapter VII: PROPOSITIONAL TRANSLATIONS; Chapter VIII: THEORIES FOR POLYNOMIAL TIME AND BEYOND; Chapter IX: THEORIES FOR SMALL CLASSES; Chapter X: PROOF SYSTEMS AND THE REFLECTION PRINCIPLE; Appendix A: COMPUTATION MODELS; BIBLIOGRAPHY; INDEX

Sommario/riassunto

This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. Associated with each of many complexity classes are both a two-sorted predicate calculus theory, with induction restricted to concepts in the class, and a propositional proof system. The complexity classes range from AC0 for the weakest theory up to the polynomial hierarchy. Each bounded theorem in a theory translates into a family of (quantified) propositional tautologies with polynomial size proofs in the corresponding proof system. The theory proves the soundness of the associated proof system. The result is a uniform treatment of many systems in the literature, including Buss's theories for the polynomial hierarchy and many disparate systems for complexity classes such as AC0, AC0(m), TC0, NC1, L, NL, NC, and P.