1.

Record Nr.

UNINA9910154752103321

Autore

Stoll Wilhelm

Titolo

Invariant Forms on Grassmann Manifolds. (AM-89), Volume 89 / / Wilhelm Stoll

Pubbl/distr/stampa

Princeton, NJ : , : Princeton University Press, , [2016]

©1978

ISBN

1-4008-8188-9

Descrizione fisica

1 online resource (128 pages)

Collana

Annals of Mathematics Studies ; ; 252

Disciplina

514/.224

Soggetti

Grassmann manifolds

Differential forms

Invariants

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Frontmatter -- CONTENTS -- PREFACE -- GERMAN LETTERS -- INTRODUCTION -- 1. FLAG SPACES -- 2. SCHUBERT VARIETIES -- 3. CHERN FORMS -- 4. THE THEOREM OF BOTT AND CHERN -- 5. THE POINCARÉ DUAL OF A SCHUBERT VARIETY -- 6. MATSUSHIMA'S THEOREM -- 7. THE THEOREMS OF PIERI AND GIAMBELLI -- APPENDIX -- REFERENCES -- INDEX -- Backmatter

Sommario/riassunto

This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view.This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets.



2.

Record Nr.

UNIORUON00427056

Autore

CONTARINI, Pier Maria

Titolo

Compendio universal di republica / Pier Maria Contarini ; a cura di Vittorio Conti

Pubbl/distr/stampa

Firenze, : Centro   Editoriale Toscano, 1990

Descrizione fisica

XLI, 207 p. ; 21 cm.

Disciplina

320.01

Soggetti

Politica - Teorie

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia