| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNIORUON00041084 |
|
|
Autore |
SAURIN, Jules |
|
|
Titolo |
Le Peuplement français en Tunisie / Jules Saurin |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Paris, : Augustin Challamel, 1910 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Soggetti |
|
Tunisia - Storia - Dominazione francese |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910372786803321 |
|
|
Autore |
Kaimakamis George |
|
|
Titolo |
Geometry of Submanifolds and Homogeneous Spaces |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (128 p.) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In |
|
|
|
|
|
|
|
|
|
|
this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered. |
|
|
|
|
|
| |