1.

Record Nr.

UNINA9910816877303321

Autore

Kirchgessner Karsten

Titolo

Lern, und Übungsbuch zur theoretischen Physik 1 : klassische mechanik / / von Karsten Kirchgessner, Marco Schreck

Pubbl/distr/stampa

München, Germany : , : Oldenbourg Verlag München, , 2014

©2014

ISBN

3-486-85842-4

Descrizione fisica

1 online resource (267 p.)

Classificazione

UC 100

Disciplina

530.15

Soggetti

Mathematical physics

Physics

Quantum theory

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Frontmatter -- Vorwort -- Inhaltsverzeichnis -- 1. Newtonsche Gesetze -- 2. Raumkurven und Kinematik -- 3. Fundamentale Grössen in der Mechanik -- 4. Bezugssysteme in der klassischen Mechanik -- 5. Klassische Ein-Teilchen-Systeme -- 6. Erhaltungsgrössen und Erhaltungssäatze -- 7. Klassische Zwei- und Mehr-Teilchen-Systeme -- 8. Mechanik ausgedehnter Körper -- Lösungen der Übungsaufgaben -- Index

Sommario/riassunto

eine der größten Hürden in den ersten Semestern des Physikstudiums stellt das Pflichtfach Theoretische Physik dar. An den wöchentlichen Übungsaufgaben und anspruchsvollen Klausuren scheitern jedoch viele Studierende. Dieses Lern- und Übungsbuch ermöglicht die optimale Prüfungsvorbereitung, in dem es eine Brücke zwischen der Theorie der Vorlesung und der Anwendung der erlernten Kenntnisse bildet. Die Autoren, durch langjährige Erfahrung als Tutoren mit den Schwierigkeiten von Studienanfängern vertraut, stellen systematische Lösungsansätze und clevere Rechenkniffe vor. Für alle Aufgaben wird der vollständige Lösungsweg präsentiert.



2.

Record Nr.

UNISA996248117603316

Titolo

Representing Kenneth Burke / / edited by Hayden White and Margaret Brose

Pubbl/distr/stampa

Baltimore, : Johns Hopkins University Press, c1982

Descrizione fisica

1 online resource (ix, 175 p. )

Collana

Selected papers from the English Institute ; ; new ser., no. 6

Altri autori (Persone)

WhiteHayden V. <1928-2018>

BroseMargaret

Disciplina

818/.5209

Soggetti

Criticism - History - 20th century - United States

American Literature

English

Languages & Literatures

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references.



3.

Record Nr.

UNINA9911049052503321

Autore

D'Agostini G (Giulio)

Titolo

Bayesian reasoning in data analysis : a critical introduction / / Giulio D'Agostini

Pubbl/distr/stampa

Singapore ; ; River Edge, NJ, : World Scientific, c2003

ISBN

9786611928216

9781281928214

1281928216

9789812775511

981277551X

Descrizione fisica

1 online resource (351 p.)

Disciplina

519.5/42

Soggetti

Bayesian statistical decision theory

Statistical decision

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 313-323) and index.

Nota di contenuto

Contents; Preface; PART I Critical review and outline of the Bayesian alternative; 1 Uncertainty in physics and the usual methods of handling it; 1.1 Uncertainty in physics; 1.2 True value, error and uncertainty; 1.3 Sources of measurement uncertainty; 1.4 Usual handling of measurement uncertainties; 1.5 Probability of observables versus probability of 'true values'; 1.6 Probability of the causes; 1.7 Unsuitability of frequentistic confidence intervals; 1.8 Misunderstandings caused by the standard paradigm of hypothesis tests; 1.9 Statistical significance versus probability of hypotheses

2 A probabilistic theory of measurement uncertainty2.1 Where to restart from?; 2.2 Concepts of probability; 2.3 Subjective probability; 2.4 Learning from observations: the 'problem of induction'; 2.5 Beyond Popper's falsification scheme; 2.6 From the probability of the effects to the probability of the causes; 2.7 Bayes' theorem for uncertain quantities: derivation from a physicist's point of view; 2.8 Afraid of 'prejudices'? Logical necessity versus frequent practical irrelevance of the priors; 2.9 Recovering standard methods and short-cuts to Bayesian reasoning



2.10 Evaluation of measurement uncertainty: general scheme2.10.1 Direct measurement in the absence of systematic errors; 2.10.2 Indirect measurements; 2.10.3 Systematic errors; 2.10.4 Approximate methods; PART 2 A Bayesian primer; 3 Subjective probability and Bayes' theorem; 3.1 What is probability?; 3.2 Subjective definition of probability; 3.3 Rules of probability; 3.4 Subjective probability and 'objective' description of the physical world; 3.5 Conditional probability and Bayes' theorem; 3.5.1 Dependence of the probability on the state of information; 3.5.2 Conditional probability

3.5.3 Bayes' theorem3.5.4 'Conventional' use of Bayes' theorem; 3.6 Bayesian statistics: learning by experience; 3.7 Hypothesis 'test' (discrete case); 3.7.1 Variations over a problem to Newton; 3.8 Falsificationism and Bayesian statistics; 3.9 Probability versus decision; 3.10 Probability of hypotheses versus probability of observations; 3.11 Choice of the initial probabilities (discrete case); 3.11.1 General criteria; 3.11.2 Insufficient reason and Maximum Entropy; 3.12 Solution to some problems; 3.12.1 AIDS test; 3.12.2 Gold/silver ring problem; 3.12.3 Regular or double-head coin?

3.12.4 Which random generator is responsible for the observed number?3.13 Some further examples showing the crucial role of background knowledge; 4 Probability distributions (a concise reminder); 4.1 Discrete variables; 4.2 Continuous variables: probability and probability density function; 4.3 Distribution of several random variables; 4.4 Propagation of uncertainty; 4.5 Central limit theorem; 4.5.1 Terms and role; 4.5.2 Distribution of a sample average; 4.5.3 Normal approximation of the binomial and of the Poisson distribution; 4.5.4 Normal distribution of measurement errors; 4.5.5 Caution

4.6 Laws of large numbers

Sommario/riassunto

This book provides a multi-level introduction to Bayesian reasoning (as opposed to "conventional statistics") and its applications to data analysis. The basic ideas of this "new" approach to the quantification of uncertainty are presented using examples from research and everyday life. Applications covered include: parametric inference; combination of results; treatment of uncertainty due to systematic errors and background; comparison of hypotheses; unfolding of experimental distributions; upper/lower bounds in frontier-type measurements. Approximate methods for routine use are derived and ar