1.

Record Nr.

UNISALENTO991004128749707536

Autore

Craca, Clotilde

Titolo

Le possibilità della poesia : Lucrezio e la Madre frigia in De rerum natura II, 598-660 / Clotilde Craca

Pubbl/distr/stampa

Bari : Edipuglia, 2000

ISBN

8872282489

Descrizione fisica

181 p. ; 21 cm.

Collana

Scrinia ; 15

Disciplina

871

Soggetti

Divinità nella letteratura

Lucrezio Caro, Tito - De rerum natura - Saggio critico

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliografia: p. [161]-167. Indici.



2.

Record Nr.

UNINA9910830771803321

Autore

Shafiee Qobad

Titolo

Microgrids : Dynamic Modeling, Stability and Control

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

1-119-90623-7

1-119-90621-0

Edizione

[1st ed.]

Descrizione fisica

1 online resource (446 pages)

Altri autori (Persone)

NaderiMobin

BevraniHassan

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Microgrid Concept and Capabilities -- 1.3 Microgrid Structure -- 1.4 Microgrids in the Future Smart Grids -- 1.5 Microgrids‐Integrated Power Grids -- 1.6 Current Trends and Future Directions -- 1.6.1 Dynamic Behavior of MGs and Their Impacts on Power Grids -- 1.6.2 Microgrid‐Based Ancillary Services -- 1.6.3 Dynamic Modeling and Control -- 1.7 The Book Content and Organization -- References -- Part I Individual Microgrids -- Chapter 2 Microgrid Dynamic Modeling: Concepts and Fundamentals -- 2.1 Introduction -- 2.2 Dynamics and Modeling -- 2.3 Fundamental Analysis Tools and Requirements -- 2.3.1 State‐Space (Small‐Signal) Modeling -- 2.3.1.1 Finding Differential Equations -- 2.3.1.2 Park and Clark Transformations -- 2.3.1.3 Linearization -- 2.3.1.4 State‐Space Representation -- 2.3.1.5 Interconnecting Modules -- 2.3.2 Detailed Modeling -- 2.3.3 Simplification Methods -- 2.3.3.1 Truncation (Regular Perturbation) -- 2.3.3.2 Residualization (Singular Perturbation) -- 2.3.3.3 Aggregation -- 2.3.3.4 Sensitivity Analysis -- 2.3.4 Prony Analysis -- 2.3.5 Large‐Signal Modeling -- 2.4 Small‐Signal Modeling of Microgrid Components -- 2.4.1 DC-AC Converter (Inverter) -- 2.4.2 AC-DC Converter (Rectifier) -- 2.4.3 DC-DC Converter (Chopper) --



2.4.4 LC Filter -- 2.4.5 Power Network -- 2.4.5.1 Virtual Resistor Calculation -- 2.4.6 Loads -- 2.4.6.1 Constant RL Impedance Load -- 2.4.6.2 Constant Power Load (CPL) -- 2.4.6.3 Motor Load -- 2.4.6.4 Active Load -- 2.4.7 Energy Resources and Storages -- 2.4.7.1 Wind Generation Unit -- 2.4.7.2 Photovoltaic Generation Unit -- 2.4.7.3 Battery -- 2.4.7.4 Super‐Capacitor -- 2.5 Small‐Signal Modeling of Microgrid Controllers -- 2.5.1 Primary Control Strategies.

2.5.1.1 Grid‐Forming Strategy -- 2.5.1.2 Grid‐Following Strategy -- 2.5.2 Secondary Control -- 2.5.3 Higher Control Levels -- 2.6 Large‐Signal Modeling: An Example -- 2.6.1 Governing Equations on Synchronverter -- 2.6.2 Nonlinear State‐Space Representation -- 2.7 Summary -- References -- Chapter 3 Microgrid Dynamic Modeling: Overall Modeling and Case Studies -- 3.1 Introduction -- 3.2 Overall Microgrid Dynamic Modeling -- 3.2.1 Common Reference Frame -- 3.2.2 Microgrid General State‐Space Model -- 3.2.3 Grid Model -- 3.3 Small‐Signal Modeling of DC and AC Microgrids -- 3.3.1 A Grid‐Connected PV -- 3.3.2 Grid‐Connected AC Microgrids -- 3.3.3 Islanded AC Microgrids: The Detailed Model -- 3.3.4 Islanded AC Microgrids: A Sensitivity Analysis‐Based Simplified Model -- 3.3.4.1 Removing/Reconfiguration Process of Modules -- 3.3.4.2 DLFMs Comparison of the Detailed and Simplified Models -- 3.3.4.3 The Oscillatory DLFM Comparison -- 3.3.5 Islanded AC Microgrids: Aggregated Single‐Order Model -- 3.3.5.1 General Steps of Modeling -- 3.3.5.2 Virtual Swing Equation‐Based Single‐Order Model -- 3.3.6 Islanded DC Microgrid -- 3.4 Large‐Signal Modeling of Microgrids -- 3.4.1 Model Validation -- 3.4.2 Time‐Domain Simulations -- 3.5 Summary -- References -- Chapter 4 Microgrids Stability -- 4.1 Introduction -- 4.2 Stability Definition and Classification -- 4.3 Basic Requirements -- 4.3.1 Eigenvalue Analysis -- 4.3.2 Participation Matrix -- 4.3.3 Sensitivity Analysis -- 4.4 Small‐Signal Stability Analysis -- 4.4.1 Grid‐Connected PV -- 4.4.1.1 Sensitivity Analysis: LC Filter Parameters -- 4.4.1.2 Sensitivity Analysis: Coupling/Grid Line Length -- 4.4.1.3 Sensitivity Analysis: PLL Gains -- 4.4.1.4 Sensitivity Analysis: Current Control Gains -- 4.4.1.5 Sensitivity Analysis: DC Voltage Control gains -- 4.4.2 Grid‐Connected AC Microgrids.

4.4.2.1 Sensitivity Analysis: Grid Strength Study -- 4.4.2.2 Sensitivity Analysis: Interaction of GFL DERs -- 4.4.3 Islanded AC Microgrids -- 4.4.3.1 Sensitivity Analysis of Droop Gains -- 4.4.3.2 Sensitivity Analysis of Virtual Impedance -- 4.4.3.3 Stability Analysis of Secondary Control -- 4.4.3.4 Sensitivity Analysis of GFL DER Parameters -- 4.4.3.5 Weakness of AC Microgrids -- 4.4.3.6 Relative Stability Improvement Using Grid‐Supporting Control Strategy -- 4.4.4 Islanded DC Microgrids -- 4.5 Transient Stability -- 4.5.1 Power Sharing Stability in AC Microgrids -- 4.5.2 Synchronverter Stabilization -- 4.5.2.1 Adaptive Backstepping Stabilizing Method -- 4.5.2.2 Simulation Results -- 4.6 Summary -- References -- Chapter 5 Microgrid Control: Concepts and Fundamentals -- 5.1 Introduction -- 5.2 Fundamentals and Requirements -- 5.2.1 Introduction to Control Systems -- 5.2.2 Control Objectives and Challenges -- 5.2.3 Control Architectures -- 5.3 Control Strategies for Power Converters -- 5.3.1 Introduction -- 5.3.2 Grid‐Following Power Converters -- 5.3.2.1 Current Control -- 5.3.2.2 Synchronization Algorithm -- 5.3.3 Grid‐Forming Power Converters -- 5.4 Hierarchical Control -- 5.4.1 The Control Hierarchy -- 5.4.2 Control Layers -- 5.5 Primary Control -- 5.5.1 Droop Control -- 5.5.1.1 Droop Control for Inductive Grids -- 5.5.1.2 Droop Control for Resistive Grids -- 5.5.1.3 Droop Control for Resistive-Inductive Grids -- 5.5.1.4 Discussion on the Conventional Droop Control -- 5.5.1.5 Droop Control for DC Grids -- 5.5.2 Virtual Impedance -- 5.5.3



A Simulation Study for Primary Control of AC Microgrids -- 5.5.3.1 Case Study -- 5.5.3.2 Simulation Results -- 5.6 Secondary Control -- 5.6.1 Secondary Control Functions and Strategies -- 5.6.1.1 Secondary Control Functions -- 5.6.1.2 Secondary Control Strategies -- 5.6.2 Centralized Secondary Control.

5.6.3 Distributed Secondary Control -- 5.6.3.1 Communication Network as a Graph -- 5.6.3.2 Average‐Based DISC -- 5.6.3.3 Consensus‐Based DISC -- 5.6.3.4 Event‐Triggered DISC -- 5.6.4 Decentralized Secondary Control -- 5.6.4.1 Washout Filter‐Based DESC -- 5.6.4.2 Local Variable‐Based DESC -- 5.6.4.3 Estimation‐Based DESC -- 5.6.5 A Simulation Study for Secondary Control of AC Microgrids -- 5.6.5.1 Case Study and Controller Implementation -- 5.6.5.2 Simulation Results -- 5.7 Central Control -- 5.8 Global Control -- 5.9 Summary -- References -- Chapter 6 Advances in Microgrid Control -- 6.1 Introduction -- 6.2 Advanced Control Synthesis -- 6.2.1 Advanced Control Techniques -- 6.2.1.1 Optimal Control -- 6.2.1.2 Robust Control -- 6.2.1.3 Nonlinear Control -- 6.2.1.4 Intelligent Control -- 6.2.2 Model Predictive Control -- 6.2.2.1 MPC for Microgrids -- 6.2.2.2 Finite Control Set Model Predictive Control -- 6.2.3 Model Predictive Control of DC Microgrids with Constant Power Loads -- 6.2.3.1 Case Study and Dynamic Modeling -- 6.2.3.2 Design Methodology -- 6.2.3.3 Real‐Time Hardware in the Loop Results -- 6.2.4 Hybrid Fuzzy Predictive Control for Smooth Transition of AC Microgrids -- 6.2.4.1 Case Study and Dynamic Modeling -- 6.2.4.2 Control System Design -- 6.2.4.3 Simulation Results -- 6.3 Virtual Dynamic Control -- 6.3.1 Concept and Structure -- 6.3.2 Virtual Synchronous Generator (VSG) -- 6.3.2.1 VSG Applications -- 6.3.3 Virtual Dynamic Control of DC Microgrids -- 6.3.3.1 Dynamic Improvement of DC Microgrids Using Virtual Inertia Concept -- 6.3.3.2 Case Study and Simulation Results -- 6.4 Resilient and Cybersecure Control -- 6.4.1 Microgrid as a Cyber‐Physical System -- 6.4.2 Communication Requirements -- 6.4.3 Cybersecurity -- 6.4.3.1 Network/Data Cyber Threats on Microgrids -- 6.4.3.2 Distributed Secondary Control Under Network Cyber Attacks.

6.4.3.3 Cyberattack Detection -- 6.4.3.4 Cyberattack Mitigation -- 6.4.4 Event‐Triggered Control -- 6.4.4.1 Event‐Triggered Secondary Control of AC Microgrids -- 6.4.4.2 Physical and Control Layers -- 6.4.4.3 Secondary Control Design -- 6.4.4.4 Case Study and Simulation Results -- 6.5 Summary -- References -- Part II Interconnected Microgrids -- Chapter 7 Interconnected Microgrids: Opportunities and Challenges -- 7.1 Introduction -- 7.2 An Overview -- 7.3 Architectures of Interconnected Microgrids -- 7.4 Benefits, Challenges, and Research Fields -- 7.5 Operation of Interconnected Microgrids -- 7.6 Vacancies for Future Research -- 7.6.1 IMG Dynamic Modeling -- 7.6.2 IMG Stability Analysis -- 7.6.3 IMG Control -- 7.7 Summary -- References -- Chapter 8 Modeling of Interconnected Microgrids -- 8.1 Introduction -- 8.2 Interconnection Method -- 8.3 Module Modeling -- 8.3.1 Microgrid Modeling -- 8.3.1.1 Modeling of Secondary Control for CB‐IMGs -- 8.3.1.2 Other MG Modules -- 8.3.1.3 Overall MG Model -- 8.3.2 Interlinking Line Modeling -- 8.3.3 Back‐to‐Back Converter Modeling -- 8.3.3.1 AC Side of the BTBC -- 8.3.3.2 DC Side of the BTBC -- 8.3.3.3 Dependent Current and Voltage Sources -- 8.3.3.4 BTBC Power Part Interconnection -- 8.3.3.5 Power Controller -- 8.3.3.6 DC Voltage Controller -- 8.3.3.7 Synchronizing PLLs -- 8.3.3.8 Complete Interconnection of BTBC Modules -- 8.3.4 Circuit Breaker Modeling -- 8.4 Overall IMG Modeling -- 8.4.1 Comprehensive Modeling of CB‐IMGs -- 8.4.2 Comprehensive Modeling of BTBC‐IMGs -- 8.5 Model Validation -- 8.5.1 Model Validation Procedure -- 8.5.2 Real‐Time Simulator -- 8.5.3 Validation of CB‐IMG Modeling -- 8.5.3.1



Case Study Information -- 8.5.3.2 Prony Analysis Results -- 8.5.3.3 Comparison Results -- 8.5.4 Validation of BTBC‐IMG Modeling -- 8.6 Reduced‐Order Models.

8.6.1 Simplified Model Application in CB‐IMG Frequency Control.

3.

Record Nr.

UNINA9911047816103321

Autore

Kadoch Michel

Titolo

Information Processing and Network Provisioning : Third International Conference, ICIPNP 2024 Spring, Beijing, China, June 14–16, 2024, Proceedings, Part II / / edited by Michel Kadoch, Mohamed Cheriet, Xuesong Qiu

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2026

ISBN

981-9664-65-9

Edizione

[1st ed. 2026.]

Descrizione fisica

1 online resource (558 pages)

Collana

Communications in Computer and Information Science, , 1865-0937 ; ; 2417

Altri autori (Persone)

CherietM (Mohamed)

QiuXuesong

Disciplina

621.39

004.6

Soggetti

Computer engineering

Computer networks

Cloud computing

Signal processing

Computer networks - Security measures

Internet of things

Computer Engineering and Networks

Computer Communication Networks

Cloud Computing

Digital and Analog Signal Processing

Mobile and Network Security

Internet of Things

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

-- ICIPNP 2024-Spring.  -- Inter-system Interference and Optimal



Utilisation of Resources in 1800MHz Band 5G Networks.  -- Multi-Domain Fusion Method for Power Business Data on Data Middle Platform.  -- Research on Engineering Cost Information Processing and Database Construction Based on BIM.  -- A Lightweight Human Activity Recognition Method based on Machine Learning.  -- Advancements and Challenges in Wireless Multimedia Communications: A Comprehensive Review.  -- The Prediction of Crystallizer Liquid Level Fluctuations in Continuous Casting Based on HECNN-LSTM Model.  -- Cross-Layer Design for Wireless Multimedia Communications: Optimal Resource Allocation and PerformanceOptimization.  -- IEEE802.11ax Multi-frame Transmission Resource Allocation Method for Fault Tolerance.  -- Wavelet Transform And SRResNet Based Image Compression And Transmission Scheme With Beidou ShortMessage.  -- Connector Fixture Temperature Monitoring for Railroad Infrastructure Maintenance.  -- Research on the Evaluation of Wireless Quality.  -- Research on Key Technology of Navigation and Positioning Based on GAGAN and Analysis of SystemAccuracy.  -- Compatibility Assessment of 5G Macro Stations with GSM-R Systems in High-Speed Railway.  -- Wireless Multimedia Communication in Smart Cities: Applications and Challenges.  -- Advancements in Onboard Real-Time Processing for SAR Satellite Imaging.  -- Exploration of Technical and Economic Data Governance of Power Generation Engineering.  -- Enhancing Rail Network Efficiency with Advanced 5G Connectivity Solutions.  -- A Satellite-positioning Assisted Mobility Management Method for Satellite Fusion Networks.  -- Deployment of Multiple Aerial Base Stations in Dynamic Traffic Scenarios.  -- Resource Allocation for NOMA-Assisted Mobile Edge Computing System with Data Compression.  -- Big Data Exploration and Practice of Non-equipment Work Package for Nuclear Island Installation Based onFocused Business System Collaboration.  -- Telemetry Service Visualization for Computing and Network Convergence Environment.  -- Green Communications for Wireless Multimedia: Energy-Efficient Solutions and Sustainability Perspectives.  -- A Review of Base Station Navigation Technology for Integrated Communication and Navigation.  -- Multimodal Sensing-assisted Communication Beamforming with Lightweight Feature Learning.  -- Research on Time Synchronization Error Analysis and Compensation Based on Data Link RTT under HighDynamic.  -- Research on Performance Test Method of Real Time Locating System.  -- Fuzz Testing for Database Management System Configuration Errors.  -- Advanced Task Offloading Techniques in Integrated Satellite-Terrestrial Networks: An In-Depth Analysis.  -- Study and Application of Adjacent Frequency Interference For 5G System in 900MHz Band.  -- Leveraging Artificial Neural Networks for Accurate ShortTerm Traffic Prediction in Centralized SDN Archite.  -- Study on Intelligent Digital Manufacturing of Engine Connecting Rods.  -- Multi-Access Edge Computing-Assisted Satellite-Terrestrial Integrated Networks.  -- Exploration and Implementation of Heavy Haul Railway Catenary System Advanced Intelligent MonitoringTechnology.  -- Research on Vehicle Target Recognition Based on Improved YOLO Algorithm.  -- Ultra-Reliable Low-Latency Communications (URLLC) in Wireless Multimedia: Prospects and Challenges.  -- In-situ Synthesis of C4N@CNT Composites for Ultra Low-temperature Proton Battery.  -- Data Categorization with Transformer and Associative Attention in Data Middle Platform.

Sommario/riassunto

The four-volume set CCIS 2416, 2417, 2418 and 2419 constitutes the refereed post-conference proceedings of the Third International Conference on Information Processing and Network Provisioning, ICIPNP 2024 Spring, held in Beijing, China, during June 14–16, 2024.



The 152 revised full papers presented in these proceedings were carefully reviewed and selected from 347 submissions. They focus on topics ranging from 5G/6G evolution and AI in network optimization to quantum communication and green computing.