1.

Record Nr.

UNISA990001941420203316

Autore

SLICHER VAN BATH, B. H.

Titolo

The Agrarian History of Western Europe / B. H. Slicher van Bath

Pubbl/distr/stampa

London, : Arnold, 1966

Descrizione fisica

IX, 366 p. ; 25 cm

Collocazione

X.2.B. 876(III G 103)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910551736103321

Autore

Masi, Felice

Titolo

L'arte della misura : contributi su fenomenologia e conoscenza naturale / Felice Masi

ISBN

9788869060595

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9911047811103321

Autore

Lee Gregory T

Titolo

Group Identities on Units and Symmetric Units of Group Rings / / by Gregory T. Lee

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783032046208

9783032046192

Edizione

[2nd ed. 2025.]

Descrizione fisica

1 online resource (486 pages)

Collana

Algebra and Applications, , 2192-2950 ; ; 33

Disciplina

512.4

Soggetti

Group theory

Associative rings

Associative algebras

Group Theory and Generalizations

Associative Rings and Algebras

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Group Identities on Units of Group Rings -- Group Identities on Symmetric Units -- Lie Identities on Symmetric Elements -- Nilpotence of and.

Sommario/riassunto

This book presents the results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest. Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid-1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined.