| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9911045227203321 |
|
|
Titolo |
Handbook on thermal hydraulics in water-cooled nuclear reactors . Volume 1 Foundations and principles / / edited by Francesco d'Auria, Yassin A. Hassan |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cambridge, MA : , : Woodhead Publishing is an imprint of Elsevier, , [2024] |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[Second edition] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (932 pages) |
|
|
|
|
|
|
Collana |
|
Woodhead Publishing Series in Energy |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Thermal hydraulics |
Nuclear reactors |
Reactors nuclears |
Hidràulica tèrmica |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Front Cover -- Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors -- Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors: Volume 1: Foundations and Principles -- Dedication -- Copyright -- Contents -- List of contributors -- Contributors for volumes 1, 2 and 3 -- Foreword -- Glossary -- Preface to the first edition of the book -- Preface to the second edition of the book -- Acknowledgments (for the past) and wishes (for the future) -- 1 - Introduction -- Foreword -- 1.1 Introduction -- 1.1.1 Scope and framework -- 1.1.1.1 Origin of nuclear thermal hydraulics -- 1.1.1.2 Single- and two-phase flows -- 1.1.1.3 Prominent scientists, origins, and textbooks -- 1.1.1.4 Journals, conferences, the web, and selected international institutions -- 1.1.1.5 Education and training -- 1.1.1.6 Target nuclear power plant and research reactor types and structures, systems, and components of nuclear installations -- 1.1.1.7 Experiments and instrumentation -- 1.1.1.8 Numerical methods and computer science -- 1.1.1.9 Nuclear safety, licensing process, and design basis accident (moving) boundaries -- 1.1.1.10 Severe accidents -- 1.1.1.11 Containment and reactor coolant system -- 1.1.1.12 |
|
|
|
|
|
|
|
|
|
Passive systems, reliability, and stability issues -- 1.1.1.13 Accident phenomenology -- 1.1.1.14 Role of startup and shutdown phenomena -- 1.1.1.15 Accident management and its procedures -- 1.1.1.16 Generation IV and small modular reactor thermal hydraulics -- 1.1.1.17 Connections to neutron physics, probabilistic safety assessment, radioprotection, chemistry, mechanics, nuclear fuel, and e ... -- 1.1.1.18 Summary of scope and framework of the textbook -- 1.1.2 Objectives, innovations, and target audience -- 1.1.2.1 Reformulation of textbook objective -- 1.1.2.2 To whom this book is addressed -- 1.1.3 Structure and content -- 1.1.3.1 Chapter 1: Introduction. |
1.1.3.2 Chapter 2: Historical remarks -- 1.1.3.3 Chapter 3: Definitions -- 1.1.3.4 Chapter 4: Needs -- 1.1.3.5 Chapter 5: Balance equations -- 1.1.3.6 Chapter 6: Phenomena -- 1.1.3.7 Chapter 7: Heat transfer -- 1.1.3.8 Chapter 8: Pressure drops -- 1.1.3.9 Chapter 9: Constitutive equations -- 1.1.3.10 Chapter 10: Special models -- 1.1.3.11 Chapter 11: System thermal-hydraulic codes -- 1.1.3.12 Chapter 12: Computational fluid dynamics codes -- 1.1.3.13 Chapter 13: Verification, validation, scaling, and uncertainty -- 1.1.3.14 Chapter 14: Best estimate plus uncertainty approach -- 1.1.3.15 Chapter 15: Design basis accident/condition calculations -- 1.1.3.16 Chapter 16: Thermal hydraulics of nuclear power plant accident occurrences -- 1.1.3.17 Chapter 17: Instrumentation and (basic) experiments -- 1.1.3.18 Chapter 18: Subchannel thermal hydraulics -- 1.1.3.19 Chapter 19: Containment thermal hydraulics -- 1.1.3.20 Chapter 20: Numerics in nuclear thermal hydraulics -- 1.1.3.21 Chapter 21: Scaling insights -- 1.1.3.22 Chapter 22: New perspectives for verification and validation -- 1.1.3.23 Chapter 23: Thermal-hydraulic design of water-cooled nuclear reactors -- 1.1.3.24 Chapter 24: Controversial issues and perspectives -- 1.1.3.25 Chapter interconnections -- Glossary -- Exercises and questions -- Acknowledgments -- 2 - A historical perspective of nuclear thermal hydraulics -- Foreword -- 2.1 Introduction -- 2.1.1 Key actors and stakeholders in nuclear thermal hydraulics -- 2.1.2 Objective -- 2.2 System thermal hydraulics history and trends -- 2.2.1 Role of nuclear thermal hydraulics in nuclear reactor safety -- 2.2.1.1 Roles of probabilistic and deterministic safety assessment -- 2.2.1.2 Role of nuclear thermal hydraulics -- 2.2.2 Definitions -- 2.2.3 History -- 2.2.3.1 Regulatory history in the United States -- 2.2.3.2 Before 1960 -- 2.2.3.3 During 1960-70. |
2.2.3.4 During 1970-80 -- 2.2.3.5 During 1980-90 -- 2.2.3.6 During 1990-2000 -- 2.2.3.7 During 2000-10 -- 2.2.3.8 During 2010-20 -- 2.2.3.9 Historical list of topics -- 2.2.3.10 Summary history of nuclear thermal hydraulics -- 2.2.4 An interpretation of current trends -- 2.3 Perspectives for system thermal hydraulics -- 2.3.1 "Local form loss" coefficients (also reported as "K-factors") -- 2.3.2 Multidimensional heat transfer coefficient surface -- 2.3.3 Energy and entropy balance following reactor coolant system blowdown and containment pressurization -- 2.3.4 Precision targets -- 2.3.5 Applying computational fluid dynamics-like approaches to nuclear power plant design and nuclear reactor safety technologies -- 2.3.6 Thermal hydraulics of passive systems -- 2.3.7 Scaling issue and experiments -- 2.3.8 Verification and validation of system thermal hydraulics codes -- 2.3.9 Uncertainty analysis -- 2.3.10 Coupling system thermal hydraulics -- 2.3.11 Modeling and structuring of computational tools -- 2.3.12 Licensing needs -- 2.3.13 Probabilistic safety assessment and system thermal hydraulics -- 2.3.14 Severe accidents and system thermal hydraulics -- 2.3.15 User effects and training -- 2.3.16 Best estimate plus uncertainty approach -- 2.3.17 Summary remarks -- 2.4 Conclusions -- Exercises and questions -- Acknowledgments -- 3 - |
|
|
|
|
|
|
|
Parameters and concepts in nuclear thermal hydraulics -- Foreword -- 3.1 General remarks -- 3.1.1 General remarks on parameters and concepts -- 3.1.2 Importance of two-phase flow -- 3.1.3 Multiscale and multiphysics -- 3.1.4 Turbulence and two-phase flow -- 3.1.5 Empirical database and instrumentation -- 3.2 Concepts involved in two-phase flow development -- 3.2.1 General aspects -- 3.2.2 Parameters and concepts -- 3.2.2.1 Void fraction/quality -- Interfacial area/interfacial area concentration -- 3.2.2.2 Mass velocity. |
3.2.2.3 Equilibrium/subcooling/superheating -- 3.2.2.4 Pressure drop -- 3.2.2.5 Friction -- 3.2.2.6 Vaporization/evaporation/boiling -- 3.2.2.7 Condensation -- 3.2.2.8 Phase separation/mixture levels -- 3.2.2.9 Parameters of balance equations -- 3.2.2.10 Flow-regime definition -- 3.3 Concepts involved in heat transfer developments -- 3.3.1 General aspects -- 3.3.1.1 Importance of heat transfer developments -- 3.3.1.2 Scope -- 3.3.2 Parameters and concepts -- 3.3.2.1 Related to power generation -- 3.3.2.2 Related to heat conduction -- 3.3.2.3 Related to heat convection-general aspects -- 3.3.2.4 Related to heat convection-pre-critical heat flux convection modes -- 3.3.2.5 Related to heat convection-critical heat flux/boiling crisis/post-critical heat flux convection modes -- 3.3.2.6 Related to heat radiation -- 3.4 Concepts involved in target phenomena -- 3.4.1 General aspects -- 3.4.2 Selected phenomena -- 3.4.2.1 Natural circulation -- 3.4.2.2 Critical and choked flows -- 3.4.2.3 Blowdown/reflood/rewet -- 3.4.2.4 Reflux condenser mode -- 3.4.2.5 Loop seal clearing -- 3.4.2.6 Steam binding -- 3.4.2.7 Boron dilution accidents -- 3.4.2.8 Boron dilution/deboration -- 3.4.2.9 Countercurrent flow limitation -- 3.5 Analytical tools -- 3.5.1 General aspects -- 3.5.2 Models and approximations -- 3.5.2.1 Homogeneous model -- 3.5.2.2 Separated flow model -- 3.5.2.3 Drift-flux model -- 3.5.2.4 Lumped parameter models -- 3.5.2.5 One-dimensional/three-dimensional -- 3.5.2.6 Two-fluid model -- 3.5.3 Concepts related to system codes -- 3.5.3.1 General aspects -- 3.5.3.2 Closure laws or constitutive equations -- 3.5.3.3 Heat transfer correlations/lookup tables -- 3.5.3.4 Special models -- 3.5.3.5 Special components -- 3.5.3.6 Nodalization/nodalization diagram -- 3.5.3.7 User effect/good practices -- 3.5.4 Additional concepts involved in analytical thermal hydraulics. |
3.5.4.1 Hydraulic diameter/Reynolds and Froude numbers -- 3.5.4.2 Prandtl and Nüsselt numbers -- 3.5.4.3 Nuclear factors -- 3.5.4.4 Engineering factors -- 3.6 Verification and validation -- 3.6.1 Definitions -- 3.6.2 Concepts involved in experimental thermal hydraulics -- 3.6.2.1 Separate effects tests -- 3.6.2.2 Integral effects tests/integral test facilities -- 3.6.2.3 Analytical support to experimental thermal hydraulics -- 3.6.2.4 Databases of experimental thermal hydraulics -- 3.6.2.5 International standard problems -- 3.6.3 Concepts involved with scaling -- 3.6.3.1 Scaling/scaling issue/addressing the scaling issue -- 3.6.3.2 Power-to-volume scaling -- 3.6.3.3 Hierarchical two-tiered scaling -- 3.6.3.4 Ishii three-level scaling -- 3.6.3.5 Fractional scaling analysis -- 3.6.3.6 Scaling distortion -- 3.6.3.7 Counterpart tests/similar/special counterparts -- 3.6.3.8 Using system codes in scaling analysis -- 3.6.3.9 Kv-scaled calculations -- 3.7 Concepts connected to design and licensing bases -- 3.7.1 Structures, systems, and components -- 3.7.2 Acceptance criteria/design criteria -- 3.7.3 Design basis -- 3.7.4 Licensing basis -- 3.7.5 Quality attributes/availability/reliability -- 3.7.6 Design basis accidents -- 3.7.7 Design basis accident phenomenology -- 3.7.8 Beyond design basis accidents/severe accidents -- 3.8 General safety concepts -- 3.8.1 Safety objectives/safety culture -- 3.8.2 Accident |
|
|
|
|
|
|
|
|
|
management/emergency operating procedures/severe accident management guidelines -- 3.8.3 Heat extraction safety relevance -- 3.8.4 Energy sources -- 3.8.5 Damage -- 3.8.6 Safety functions -- 3.8.7 Defense in depth -- 3.8.8 Defense-in-depth levels -- 3.8.9 Safety barriers -- 3.8.10 Safety systems/safety-related systems -- 3.8.11 Inherent safety/passive safety/active safety -- 3.8.12 International institutions. |
3.9 Concepts related to deterministic safety assessment. |
|
|
|
|
|
|
Sommario/riassunto |
|
This handbook provides an in-depth analysis of thermal hydraulics in water-cooled nuclear reactors, addressing foundational principles and practical applications. Edited by Francesco D’Auria and Yassin A. Hassan, it compiles contributions from leading experts in the field. The book covers a wide range of topics, including system thermal hydraulics history, two-phase flow development, heat transfer, and safety assessment. It emphasizes the role of thermal hydraulics in nuclear power plant design and safety, offering insights into pressure drops, constitutive equations, and modeling techniques. Aimed at practitioners and researchers, this comprehensive guide serves as a valuable resource for understanding the critical aspects of nuclear reactor operation and safety. |
|
|
|
|
|
|
|
| |