1.

Record Nr.

UNISALENTO991003228969707536

Autore

Colonna, Francesco, O.P. <c. 1433-1527>

Titolo

Le tableav des riches inventions couuertes du voile des feintes amoureuses, qui sont representees dans le Songe de Poliphile, desvoilees des ombres du Songe / & subtilement exposees par Beroalde

Pubbl/distr/stampa

A Paris : chez Matthieu Grillemont, 1600

Titolo uniforme

Hypnerotomachia Poliphili (Colonna, Francesco, O.P., c. 1433-1527). Francese. 224234

Descrizione fisica

20, 154, [6] c. : ill.; 4° (24 cm).

Altri autori (Persone)

Béroalde de Verville <1556-1629>

Lingua di pubblicazione

Francese

Formato

Microfilm

Livello bibliografico

Monografia

Note generali

Front. calcografico.

Frontoni, iniziali.

Incisioni xilografiche.

Riproduzione in microfiche dell'originale conservato presso la Biblioteca Apostolica Vaticana



2.

Record Nr.

UNINA9911040926203321

Autore

Ghosh Subir

Titolo

Statistical Planning and Inference : Concepts and Applications

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2026

©2026

ISBN

1-118-95889-6

1-118-95890-X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (236 pages)

Collana

Wiley Series in Probability and Statistics Series

Disciplina

001.422

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Foundation of Experiments -- 1.1 Uncertainties in Evidences -- 1.2 Examples -- 1.2.1 The Louis Pasteur Anthrax Vaccination Experiment -- 1.2.2 The Lanarkshire Milk Experiment: Milk Tests in Lanarkshire Schools -- 1.3 Replication, Randomization, Blocking, and Blinding -- 1.3.1 Replication -- 1.3.2 Randomization -- 1.3.3 Blocking -- 1.3.4 Blinding -- 1.4 Figuring It Out! -- Questions and Answers -- Bibliography -- Bibliography -- Chapter 2 Completely Randomized Design -- 2.1 An Example -- 2.2 Analyses Using R and SAS -- 2.3 Figuring It Out! -- Bibliography -- Chapter 3 Randomized Complete Block Design -- 3.1 Fixed Effects Model -- 3.2 Binomial Model for Signs -- 3.3 Randomization Model -- 3.4 Mixed Effects Model -- 3.5 General Mixed Effects Model -- 3.6 The REML Variance Components Estimates -- 3.7 BLUEs and BLUPs -- 3.7.1 The Conditional Model -- 3.7.2 The Unconditional Model -- 3.7.3 Computation-The Conditional Model -- 3.7.4 Computation-The Unconditional Model -- 3.8 Figuring It Out! -- Bibliography -- Chapter 4 Randomized Incomplete Block Design -- 4.1 Model M1: Fixed‐Effects Model -- 4.2 Model M2: Mixed‐Effects Model -- 4.3 Research Questions -- 4.4 Figuring It Out! -- 4.5 Definitions -- Exercises -- Bibliography -- Chapter 5 Error Rates -- 5.1 Definitions of Error Rates -- 5.2 Single‐Stage Methods -- 5.3 A Multistage Method -- 5.3.1 Benjamini and Hochberg Method -- 5.4



Figuring It Out -- Questions -- Bibliography -- Chapter 6 Nutrition Experiment -- 6.1 Figuring It Out! -- Bibliography -- Chapter 7 The Pearson Dependence -- 7.1 Bivariate Normal Distribution -- 7.2 Estimation of Unknown Parameters -- 7.2.1 The Unconditional Model -- 7.2.2 The Conditional Model -- 7.2.3 Test of Significance -- 7.3 A Bayesian Estimation -- 7.4 Exercises -- Bibliography.

Chapter 8 The Multivariate Dependence -- 8.1 The Multivariate Normal Distribution -- 8.2 Inference -- 8.3 Partial Dependence -- 8.4 Exercises -- Bibliography -- Chapter 9 The Conditional Mean Dependence -- 9.1 LS Estimation -- 9.2 Ridge Estimation -- 9.2.1 A Bayesian Estimation -- 9.3 Dependence of Ridge Estimator on the Tuning Parameter -- 9.4 LASSO Estimation -- 9.5 Dependence of LASSO Estimators on the Tuning Parameter -- Bibliography -- Chapter 10 More Parameters Than Observations -- 10.1 Learning by Doing-Exercises -- Exercises -- Bibliography -- Chapter 11 Eigenvalues, Eigenvectors, and Applications -- 11.1 Eigenvalues and Eigenvectors -- 11.2 Second‐Order Response Surface -- Exercises -- Bibliography -- Chapter 12 Covariance Estimation -- 12.1 Model 1 -- 12.1.1 Characterization of the Covariance Matrix and Its Estimators -- 12.1.2 Likelihood Function -- 12.1.3 Properties -- 12.2 Model 2 -- 12.2.1 Characterization of the Covariance Matrix and Its Estimators -- 12.3 Model 3 -- 12.4 Model 4 -- 12.5 Model 5 -- 12.6 Exercises -- Bibliography -- Chapter 13 Discriminant Analysis -- 13.1 Learning from the Univariate Data-Two Normal Populations with Equal Variances -- 13.1.1 Discriminant Analysis for the Univariate Data -- 13.1.2 Example-Univariate Discriminant Analysis -- 13.2 Learning from the Univariate Data-Two Normal Populations with Unequal Variances -- 13.2.1 Classification of 25 Versicolor Iris Flowers -- 13.2.2 Classification of 25 Setosa Iris Flowers -- 13.2.3 Test of Homogeneity of Variances -- 13.3 Learning from the Multivariate Data -- 13.3.1 Classification of Versicolor and Setosa -- 13.3.2 Classification of Versicolor and Virginica -- 13.4 Logistic Regression -- 13.5 Exercises -- Bibliography -- Chapter 14 Optimizing the Variance-Bias Trade‐Off -- 14.1 Variance-Bias Trade‐Off -- 14.1.1 Example 1 -- 14.1.2 Example 2 -- 14.1.3 Example 3.

14.2 Information in Data -- 14.3 Information and Design in Presence of a Covariate -- 14.3.1 Information -- 14.3.2 Optimum Design for a Covariate -- 14.4 Information and Design in Presence of Multiple Covariates -- 14.4.1 Information -- 14.4.2 Exponential Model -- 14.4.3 Exponential Regression Model with Multiple Covariates -- 14.4.4 Poisson Log‐Linear Model -- 14.4.5 Non‐parametric Regression Model -- 14.5 Exercises -- Bibliography -- Chapter 15 Specification, Discrimination, Robustness, and Sensitivity -- 15.1 The Global and Local Optimal Models -- 15.2 The T‐Optimal Design -- 15.3 Convex and Concave Functions -- 15.4 The Kullback-Leibler (KL) Divergence -- 15.5 The KL Design Optimality -- 15.6 The Differential Entropy -- 15.7 Lindley Information Measure -- 15.8 Joint Entropy, Conditional Entropy, and Mutual Information -- 15.9 Maximum Entropy Sampling -- 15.10 Search Linear Models and Search Designs -- 15.10.1 Factorial Experiments -- 15.10.2 Search Probability Matrix -- 15.11 Robustness Against Unavailable Data -- 15.12 Influential Sets of Observations -- 15.13 Exercises -- Bibliography -- Data Index -- Subject Index -- EULA.

Sommario/riassunto

Explore the foundations of, and cutting-edge developments in, statistics Statistical Planning and Inference: Concepts and Applications delivers a robust introduction to statistical planning and inference, including classical and computer age developments in statistical science.