1.

Record Nr.

UNINA9911011666103321

Autore

Huber Renata <19XX->

Titolo

Fischerhütten des frühen Jungneolithikums in Cham-Eslen (Kanton Zug) / Renata Huber und Christian Harb ; mit Beiträgen von: Jehanne Affolter [und 22 weiteren] ; herausgegeben vom Amt für Denkmalpflege und Archäologie des Kantons Zug, Direktion des Innern

Pubbl/distr/stampa

Basel, : Archäologie Schweiz, März 2023

Edizione

[Version E-Book]

Descrizione fisica

1 Online-Ressource (438 Seiten) : Illustrationen

Collana

Antiqua ; 56

Disciplina

930

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9911039325803321

Autore

Xie Songbo

Titolo

A Geometric Journey Toward Genuine Multipartite Entanglement / / by Songbo Xie

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783032001719

9783032001702

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (169 pages)

Collana

Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061

Disciplina

530.12

003.54

Soggetti

Quantum computing

Quantum entanglement

Coding theory

Information theory

Convex geometry

Discrete geometry

Quantum Information

Quantum Correlation and Entanglement

Coding and Information Theory

Convex and Discrete Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Preliminary: Hilbert Space and Linear Operators -- Review: Bipartite Entanglement -- Breakthrough: Multipartite Entanglement -- Geometric Journey: Multipartite Entanglement -- Concluding Remarks.

Sommario/riassunto

This thesis proposes a novel measure of quantum entanglement that can be used to characterize the degree of entanglement of three (or more) parties. Entanglement has been studied and used in many ways since Erwin Schrödinger defined and named it in 1935, but quantifiable measures of the degree of entanglement, known as concurrence, have long been limited to two quantum parties (two qubits, for example). Three-qubit states, which are known to be more reliable for



teleportation of qubits than two-party entanglement, run into difficult criteria in entanglement-measure theory, and efforts to quantify a measure of genuine multipartite entanglement (GME) for three-qubit states have frustrated quantum theorists for decades. This work explores a novel triangle inequality among three-qubit concurrences and demonstrates that the area of a 3-qubit concurrence triangle provides the first measure of GME for 3-qubit systems. The proposed measure, denoted “entropic fill,” has an intuitive interpretation related to the hypervolume of a simplex describing the relation between any subpart of the system with the rest. Importantly, entropic fill not only gives the first successful measure of GME for 3-party quantum systems, but also can be generalized into higher dimensions, providing a path to quantify quantum entanglement among many parties.