1.

Record Nr.

UNISALENTO991001297709707536

Autore

Rusconi Jahn, Arturo

Titolo

La Galleria d'arte moderna a Firenze / Art. Iahn-Rusconi

Pubbl/distr/stampa

Roma : La libreria dello Stato, [1934]

Descrizione fisica

60 p. : ill. ; 20 cm

Collana

Itinerari dei musei e monumenti d'Italia

Disciplina

708.5

Soggetti

Firenze Galleria d'arte moderna

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In testa al front.: Ministero della educazione nazionale, Direzione generale delle antichità e belle arti

2.

Record Nr.

UNINA9911039319703321

Autore

Popa Cosmin Radu

Titolo

Analog Current-Mode Computational Circuits for Artificial Neural Networks / / by Cosmin Radu Popa

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783032039897

9783032039880

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (233 pages)

Collana

Analog Circuits and Signal Processing, , 2197-1854

Disciplina

621.3815

Soggetti

Electronic circuit design

Embedded computer systems

Cooperating objects (Computer systems)

Electronics Design and Verification

Embedded Systems

Cyber-Physical Systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di contenuto

Introduction -- Superior-order approximation functions for generating sigmoidal activation functions -- Superior-order approximation functions for generating radial basis activation functions -- Superior-order approximation functions for artificial neural networks applications -- Analysis and design of analog function synthesizers for implmenting sigmoidal activation functions -- Analysis and design of analog function synthesizers for generating radial basis activation functions -- Analysis and design of analog function synthesizers for artificial neural networks applications -- Low-voltage low-power current-mode CMOS computational circuits for implementing activation functions -- Conclusions.

Sommario/riassunto

This book discusses in detail low-voltage low-power designs for minimizing the hardware resources required by neural network implementations. The novel method presented in this book for an accurate realization of activation functions for artificial neural networks (ANNs), is based on specific superior-order approximation functions. The author describes analog implementations in CMOS technology to increase the speed of operation, while reducing the hardware resources required for obtaining these approximation functions. Original architectures presented in this book, used for implementing previous CMOS computational structures, allow for operation independent of technological errors and temperature variations. SPICE simulations confirm the theoretically estimated results for previously presented CMOS computational structures, developed for ANNs and artificial intelligence applications.