1.

Record Nr.

UNINA9911039317303321

Autore

Lu Junwei

Titolo

Big Data Analysis : High Dimensional Probability, Statistics, Optimization, and Inference / / by Junwei Lu

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783032031617

9783032031600

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (266 pages)

Collana

Mathematics and Statistics Series

Disciplina

005.7

Soggetti

Big data

Statistics

Probabilities

Big Data

Applied Probability

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Part I Foundations of Big Data Analysis -- Chapter 1 Introduction -- Chapter 2 Preliminaries in Probability -- Chapter 3 Preliminaries in Linear Algebra -- Part II High-Dimensional Probability -- Chapter 4 Concentration Inequalities -- Chapter 5 Sub-Exponential Random Variables -- Chapter 6 Maximal Inequality -- Part III High-Dimensional Statistics -- Chapter 7 Ordinary Least Squares -- Chapter 8 Compressive Sensing -- Chapter 9 Restricted Isometry Property -- Chapter 10 Statistical Properties of Lasso -- Chapter 11 Variations of Lasso -- Part IV High-Dimensional Optimization -- Chapter 12 Convexity and Subgradient -- Chapter 13 Gradient Descent -- Chapter 14 Proximal Gradient Descent -- Chapter 15 Mirror Descent and Nesterov’s Smoothing -- Chapter 16 Duality and ADMM -- Part V High-Dimensional Inference -- Chapter 17 High Dimensional Inference -- Chapter 18 Debiased Lasso -- Chapter 19 Multiple Hypotheses -- Chapter 20 False Discovery Rate -- Chapter 21 Knock-Off -- References.

Sommario/riassunto

This book covers the methods and theory of high dimensional probability, statistics, large-scale optimization, and inference. We aim



to quickly bring readers to the frontier and interdisciplinary areas of statistics, optimization, probability, and machine learning. This book covers topics in: High dimensional probability, Concentration inequality, Sub-Gaussian random variables, Chernoff bounds, Hoeffding's inequality, Maximal inequalities, High dimensional linear regression, Ordinary least square, Compressed sensing, Lasso, Variations of Lasso including group lasso, fused lasso, adaptive lasso, etc., General high dimensional M- estimators, Variable selection consistency, High dimensional Optimization, Convex geometry, Lagrange duality, Gradient descent, Proximal gradient descent, LARS, ADMM, Mirror descent, Stochastic optimization, Large-Scale Inference, Linear model hypothesis testing, high dimensional inference, Chi-square test, maximal test, and Higher criticism, False discovery rate control.