| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910817834203321 |
|
|
Autore |
Lee Richard A., Jr. |
|
|
Titolo |
The thought of matter : materialism, conceptuality, and the transcendence of immanence / / Richard A. Lee Jr |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London : , : Rowman & Littlefield International, , [2016] |
|
©2016 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (154 p.) |
|
|
|
|
|
|
Collana |
|
Philosophical projections |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Aristotle's errant path -- Marx, Althusser, and Adorno -- Duns Scotus: materiality as singularity -- Hobbes on materialism as social philosophy -- Benjamin and Adorno on the social need for materialism. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The Thought of Matter advances current debates around materialism, arguing that matter is the 'other' of thought and, therefore, requires a method that allows that other to emerge in thought without being appropriated by it. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911028745903321 |
|
|
Autore |
Mitrović Melanija |
|
|
Titolo |
Algebra Without Borders : Classical and Constructive Semigroups and Applications |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer, , 2025 |
|
©2025 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (797 pages) |
|
|
|
|
|
|
Collana |
|
Mathematics in Mind Series |
|
|
|
|
|
|
Altri autori (Persone) |
|
HounkonnouMahouton Norbert |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
This book addresses the well-known capability and flexibility of classical and constructive semigroups (inherited from algebraic structures), to model, solve problems in extremely diverse situations, and develop interesting new algebraic ideas with many applications and connections to other areas of mathematics (logic, biomathematics, analysis. |
|
|
|
|
|
|
|
| |