| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9911021977403321 |
|
|
Autore |
Zhu Wenkun |
|
|
Titolo |
Efficient Uranium Reduction Extraction : Material Design and Reaction Mechanisms |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2025 |
|
©2025 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-84824-X |
3-527-84825-8 |
3-527-84823-1 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (302 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Background of Uranium Chemistry -- 1.1 Introduction of Uranium in Nuclear Industry -- 1.1.1 Importance of Uranium Resource in Nuclear Industry -- 1.1.2 Uranium Cycle in Nuclear Industry -- 1.2 Coordination and Species of Uranium -- 1.2.1 General Chemical Properties of Uranium -- 1.2.2 Basic Uranium Species in the Solution‐Uranyl and Uranyl Compound -- 1.2.3 Valence Transformation of Uranium -- References -- Chapter 2 Introduction of Uranium Reduction Extraction -- 2.1 Introduction of Uranium Extraction -- 2.2 Introduction of Uranium Reduction Extraction -- 2.2.1 Basic Concept and Process of Uranium Reduction Extraction -- 2.2.2 Uranium Reduction by Zerovalent Iron -- 2.2.3 Photochemistry and Photochemical Uranium Reduction -- 2.2.4 Electrochemistry Involved in the Electrochemical Uranium Reduction -- 2.3 Key Factors to Influence the Uranium Reduction Extraction -- 2.3.1 Surface Adsorption and Coordination -- 2.3.2 Reductive Ability -- 2.4 Practical Situation that Requires Uranium Extraction -- 2.4.1 Uranium Extraction in Seawater -- 2.4.2 Uranium Extraction in Mining and Metallurgy -- 2.4.3 Uranium Extraction in Nuclear Wastewater -- References -- Chapter 3 Uranium |
|
|
|
|
|
|
|
|
|
Reduction Extraction by Modified Nano Zerovalent Iron -- 3.1 Introduction of Nano Zerovalent Iron -- 3.2 Material Design for Promoted Stability and Reductive Ability -- 3.3 Uranium Extraction Performance -- 3.4 Reaction Mechanism -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Uranium Reduction Extraction by Commercial Iron Powder -- 4.1 Introduction of Alternative Abundant Reductant‐Commercial Iron Powder -- 4.2 Ultrasound Enhancement of Uranium Extraction by Commercial Iron Powder -- 4.2.1 Extraction of U(VI) by Commercial Iron Powder -- 4.2.2 Analysis of Uranium Enrichment Status. |
4.2.3 Key Mechanism of Ultrasonic Enhanced Commercial Iron Powder for Uranium Extraction -- 4.3 Microbial Sulfurization‐Enhanced Commercial Iron Powder Extraction of Uranium -- 4.3.1 Characterizations of BS‐ZVI -- 4.3.2 Performance of Photocatalytic Enrichment of U(VI) by BS‐ZVI -- 4.3.3 Photoelectric Properties and Energy Band Structure of BS‐ZVI -- 4.3.4 Photocatalytic Enrichment Mechanism of U(VI) -- 4.4 Conclusion and Perspectives -- References -- Chapter 5 Photocatalytic Uranium Reduction Extraction by Carbon‐Semiconductor Hybrid Material -- 5.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 5.2 Motivated Material Design of Carbon‐Semiconductor Hybrid Material -- 5.2.1 Introduction -- 5.2.2 Results and Discussions -- 5.2.3 Summary -- 5.3 Band Engineering of Carbon‐Semiconductor Hybrid Material -- 5.3.1 Introduction -- 5.3.2 Results and Discussions -- 5.3.3 Summary -- 5.4 Assembly of Carbon‐Semiconductor Hybrid Material for Facile Recycle Use -- 5.4.1 Introduction -- 5.4.2 Results and Discussions -- 5.4.3 Summary -- 5.5 Conclusion and Perspectives -- References -- Chapter 6 Photocatalytic Uranium Reduction Extraction by Surface Reconstructed Semiconductor -- 6.1 Introduction -- 6.2 Design of Hydrogen‐Incorporated Semiconductor‐Hydrogen‐Assist -- 6.2.1 Hydrogen‐Incorporated VO2 -- 6.2.2 Hydrogen‐Incorporated Oxidized WS2 -- 6.3 Hydrogen‐Incorporated Vacancy Engineering -- 6.3.1 Oxygen Vacancy‐Case of WO3‐x -- 6.3.2 Doping‐Induced Cation Vacancy‐Case of Fe‐Doped TiO2 -- 6.3.3 Oxygen Vacancy Engineering in Black TiO2@Co2P S‐Scheme -- 6.4 Conclusions -- References -- Chapter 7 Enhanced Photocatalytic Uranium Reduction Extraction by Electron Enhancement -- 7.1 Introduction -- 7.2 Plasmonic Enhancement of Uranium Extraction -- 7.2.1 Enhanced Uranium by Hot Electrons of Plasmonic Metals -- 7.2.1.1 Introduction -- 7.2.1.2 Summary. |
7.2.2 Plasmonic Engineering - High‐Entropy Plasmonic Alloy -- 7.2.2.1 Introduction -- 7.2.2.2 Summary -- 7.2.3 Promotion of Electron Energy by Upconversion‐Case of Er Doping -- 7.2.3.1 Introduction -- 7.2.3.2 Summary -- 7.3 Enhanced by Cocatalysis -- 7.3.1 Introduction -- 7.3.1.1 Results and Discussions -- 7.3.2 Summary -- 7.4 Conclusion and Perspectives -- References -- Chapter 8 Photocatalytic Uranium Reduction Extraction in Tributyl Phosphate‐Kerosene System -- 8.1 Introduction of Tributyl Phosphate‐Kerosene System‐Spent Fuel Reprocessing -- 8.2 Material Design‐Self Oxidation of Red Phosphorus -- 8.3 Uranium Extraction in Tributyl Phosphate‐Kerosene System -- 8.4 Reaction Mechanism‐Self Oxidation Cycle -- 8.5 Conclusion and Perspectives -- References -- Chapter 9 Photocatalytic Uranium Reduction Extraction in Fluoride‐Containing System -- 9.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 9.2 Simultaneously Constructing U(VI) Constraint Sites and Water Oxidation Sites to Promote the Purification of Fluorine‐Containing Uranium Wastewater -- 9.2.1 Introduction -- 9.2.2 Results and Discussions -- 9.2.3 Summary -- 9.3 Advanced Photocatalytic Heterojunction with Plasmon Resonance Effect for Uranium Extraction from Fluoride‐Containing Uranium |
|
|
|
|
|
|
|
|
|
Wastewater -- 9.3.1 Introduction -- 9.3.2 Results and Discussions -- 9.3.3 Summary -- References -- Chapter 10 Electrochemical Uranium Reduction Extraction: Design of Electrode Materials -- 10.1 Introduction of Electrocatalytic Uranium Reduction Extraction -- 10.2 Edge‐Site Confinement for Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.2.1 Introduction -- 10.2.2 Results and Discussions -- 10.2.3 Summary -- 10.3 Facet‐Dependent Electrochemical Uranium Extraction in Seawater Over Fe3O4 Catalysts -- 10.3.1 Introduction -- 10.3.2 Results and Discussions -- 10.3.3 Conclusion. |
10.4 Heterogeneous Interface‐Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.4.1 Introduction -- 10.4.2 Results and Discussions -- 10.4.3 Summary -- 10.5 Surface Hydroxyl‐Enhanced Electrochemical Extraction of Uranium -- 10.5.1 Introduction -- 10.5.2 Results and Discussions -- 10.5.3 Summary -- 10.6 Charge‐Separation Engineering for Electrocatalytic Uranium Reduction Extraction -- 10.6.1 Introduction -- 10.6.2 Results and Discussions -- 10.6.3 Summary -- 10.7 Conclusion and Perspectives -- References -- Chapter 11 Electrochemical Uranium Extraction from Seawater‐Reproduced Vacancy -- 11.1 Introduction of Electrocatalytic Uranium Extraction from Seawater -- 11.2 High‐Selective Site Oxygen Vacancy -- 11.3 Conclusion -- References -- Chapter 12 Electrochemical Uranium Extraction from Nuclear Wastewater of Fuel Production -- 12.1 Introduction of Nuclear Wastewater of Fuel Production: Ultrahigh Concentration of Fluoride -- 12.2 Material Design‐Ion Pair Sites -- 12.3 Uranium Extraction Performance -- 12.3.1 Simulated Wastewater -- 12.3.2 Real Nuclear Wastewater -- 12.4 Reaction Mechanism - Coordination and Crystallization -- 12.5 Conclusion -- References -- Chapter 13 Perspectives and Emerging Directions -- 13.1 Application in Real Situation -- 13.2 Criteria of Performance Evaluation -- 13.3 Device of Uranium Reduction Extraction -- 13.3.1 Chemical Reduction Coupled with External Field -- 13.3.2 Photocatalytic Device for Flow Cell -- 13.3.3 Electrocatalytic Device with Controlling System -- References -- Index -- EULA. |
|
|
|
|
|
|
Sommario/riassunto |
|
Enables readers to understand how to remove uranium from seawater and nuclear wastewater through a variety of techniques Efficient Uranium Reduction Extraction provides experimental and theoretical knowledge on uranium reduction extraction, with information ranging from the design of extraction materials and methods to the evolution of uranium. |
|
|
|
|
|
|
|
| |