| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9911019683003321 |
|
|
Autore |
Proud John F |
|
|
Titolo |
Master scheduling [[electronic resource] ] : a practical guide to competitive manufacturing / / John F. Proud |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, N.J., : John Wiley & Sons, Inc., c2007 |
|
|
|
|
|
|
|
ISBN |
|
1-118-42919-2 |
1-119-20174-8 |
1-280-85504-5 |
9786610855049 |
0-470-10701-4 |
|
|
|
|
|
|
|
|
Edizione |
[3rd ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (689 p.) |
|
|
|
|
|
|
Collana |
|
Oliver Wight manufacturing series |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Production scheduling |
Manufacturing resource planning |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Chaos in manufacturing -- Why master scheduling -- The mechanics of master scheduling -- Managing with the master schedule -- Using the MPS output in a make-to-stock environment -- What to master schedule -- Scheduling in a flow environment -- Planning bills -- Two-level MPS and other advanced techniques -- Using MPS output in a make-to-order environment -- Master scheduling in custom-product environments -- Finishing schedules -- Sales and operations planning -- Rough-cut capacity planning -- Supply management -- Demand management -- Effective implementation -- Order from chaos -- Appendix A: class A master scheduling process and performance checklists -- Appendix B: master scheduling sample implementation task list -- Appendix C: master scheduling policy, procedure, and flow diagram listing -- Appendix D: master scheduling sample process flow diagram. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Master scheduling is an essential planning tool that helps manufacturers synchronize their production cycle with actual market demand. The third edition of this easy-to-follow handbook helps you |
|
|
|
|
|
|
|
|
|
|
|
|
|
understand the basic and more advanced concepts of master scheduling, from implementation to capacity planning to final assembly techniques. Packed with handy checklists and examples, Master Scheduling, Third Edition delivers guidelines and techniques for a world-class master schedule. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911018798803321 |
|
|
Autore |
Wu Hongjing |
|
|
Titolo |
Electromagnetic Wave Absorbing Materials : Fundamentals and Applications |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781119699316 |
1119699312 |
9781119699323 |
1119699320 |
9781119699224 |
1119699223 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (269 pages) |
|
|
|
|
|
|
Collana |
|
Wiley Series in Materials for Electronic and Optoelectronic Applications Series |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Electromagnetic waves |
Materials science |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Overview of the Work -- Description -- Key Features -- Acknowledgments -- 1 Metal-Organic Framework-Based Electromagnetic Wave Absorption Materials -- 1.1 Brief Introduction to Metal-Organic Frameworks -- 1.2 Preparation Method of MOF Materials -- 1.2.1 Solvothermal Method -- 1.2.2 Microwave-Assisted Synthesis Method -- 1.2.3 Electrochemical Synthesis Method -- 1.2.4 |
|
|
|
|
|
|
|
|
|
Ultrasonic Method -- 1.2.5 Mechanochemistry Method -- 1.2.6 Steam-Assisted Conversion Method -- 1.2.7 Fluid Chemistry Method -- 1.3 MOF-Derived EMW Absorption Materials -- 1.3.1 Monometallic MOF-Derived Absorption Materials -- 1.3.2 Multi-metal MOF-Derived Absorption Materials -- 1.3.3 MOF-Carbon Composite Absorption Materials -- 1.3.4 MOF-MXene Composite Absorption Materials -- 1.3.5 MOF-Conductive Polymer Composite Absorption Materials -- 1.4 Summarize and Prospect -- References -- 2 2D MXenes for Electromagnetic Wave Absorption -- 2.1 Introduction to MXenes -- 2.2 Preparation Method of MXenes -- 2.2.1 Top-Down Strategy -- 2.2.1.1 HF Etching -- 2.2.1.2 In Situ HF Etching -- 2.2.1.3 Alkaline Solution Chemical Etching -- 2.2.1.4 Electrochemical Etching -- 2.2.1.5 Molten Salt Etching -- 2.2.2 Bottom-Up Strategies -- 2.2.2.1 Chemical Vapor Deposition -- 2.3 The Properties of MXenes -- 2.3.1 Morphologies and Surface Chemistries -- 2.3.2 Mechanical Properties -- 2.3.3 Electronic, Transport, and Band Gap Properties -- 2.3.4 Thermal Stability Properties -- 2.4 Electromagnetic Wave Absorption Performance of Pure MXenes -- 2.4.1 Content -- 2.4.2 Functional Groups and Defects -- 2.4.3 Size -- 2.4.4 Interlayer Spacing -- 2.4.5 Doping -- 2.4.6 Self-Transformation -- 2.5 Classification of MXenes in EMW Absorbing Materials -- 2.5.1 Component Optimization -- 2.5.1.1 Dielectric Materials -- 2.5.1.2 Magnetism. |
2.5.1.3 Multiple Loss Materials -- 2.5.2 Structural Regulation -- 2.5.2.1 3D Microsphere -- 2.5.2.2 Fiber -- 2.5.2.3 Sandwich Structure -- 2.5.2.4 Hierarchical Structure -- 2.6 The Application Prospects of MXenes in EMW-Absorbing Materials -- References -- 3 High-Entropy Electromagnetic Wave Absorption Materials -- 3.1 The Concept and Features of High-Entropy Materials -- 3.1.1 The Definition of High-Entropy Materials -- 3.1.2 Broaden Elemental Combination and Microstructure -- 3.1.3 Dialectical View of Single-Phase Solid Solution Properties -- 3.1.4 The Theoretical Approach of Phase Selection in HEM -- 3.1.5 Four Core Effects of HEM -- 3.1.5.1 "High-Entropy" Effect -- 3.1.5.2 "Lattice Distortion" Effect -- 3.1.5.3 "Sluggish Diffusion" Effect -- 3.1.5.4 "Cocktail" Effect -- 3.2 The Synthesis Approach and Advanced Characterization of HEM -- 3.2.1 HEM Synthesis -- 3.2.1.1 Traditional Template Sintering Method -- 3.2.1.2 High-Temperature "Thermal Shock" Method -- 3.2.1.3 HEM Synthesis Strategy Under Mild Conditions -- 3.2.2 Advanced Characterization of HEM -- 3.3 High-Entropy Electromagnetic Wave Absorption Materials -- 3.3.1 High-Entropy Alloy -- 3.3.2 High-Entropy Oxide -- 3.3.3 High-Entropy Sulfide -- 3.4 The Challenge and Prospects of HEM -- References -- 4 Novel Microscopic Electromagnetic Loss Mechanisms -- 4.1 Novel Dielectric Loss Mechanisms -- 4.1.1 Synergistic Effects of Selenium-Sulfur Co-Doping-Induced Dielectric Polarization -- 4.1.2 Synergistic Effects of Hybridization State-Induced Dielectric Polarization -- 4.1.3 Synergistic Effects of Twin Structure-Induced Dielectric Polarization -- 4.1.4 Synergistic Effects of 3D Orbitals Unpaired Electron-Induced Dielectric Polarization -- 4.1.5 Interpretation of Energy Band Theory in Dielectric Loss -- 4.1.6 Defect-Induced Polarization Loss in Multi-Shelled Spinel Hollow Spheres. |
4.2 Novel Microscopic Magnetic Loss Mechanisms -- 4.2.1 Magnetic Losses Induced by the Sequence Structure of Metallic Magnetic Chains -- 4.2.2 Multi-Model Sequence Structure for Improving Magnetic Loss -- 4.2.3 Enhanced Magnetic Coupling in Hollow Porous Carbon Three-Dimensional Magnetic Networks -- 4.2.4 Enhanced Magnetic Coupling Through Core-Shell Structural Design -- 4.3 Conclusion and Outlook -- References -- 5 Bridging Mechanisms Between Micro and Macro -- 5.1 Introduction to Micro Factors -- 5.1.1 Defects -- 5.1.2 Interfaces |
|
|
|
|
|
|
|
|
|
-- 5.1.3 Conductivity -- 5.1.4 Dipole -- 5.1.5 Saturation Magnetization -- 5.2 Regulation of Microscopic Attributes -- 5.2.1 Conventional Regulation -- 5.2.2 Physical External Fields Regulation -- 5.3 The Current State and Future Potential of Bridge Mechanism Between Micro and Macro Levels -- References -- 6 New Dielectric Physical Models for Electromagnetic Wave Absorption -- 6.1 Dielectric Microphysical Model -- 6.1.1 Dimension Distribution-Induced Interfacial Polarization Model -- 6.1.2 Three Types of Polarization Site Models -- 6.1.3 Electron Hopping and Electron Migrating Model -- 6.1.4 Three-Dimensional Conductive Network Model in Foam -- 6.1.5 Disordered Structure on the Atomic Scale-High-Entropy Models -- 6.2 Physical Models Related to Structural Design -- 6.2.1 Hierarchical Structural Models for Improved Impedance Matching -- 6.2.2 Core-Shell Structure Model -- 6.2.3 Double-Shell Structure Model -- 6.3 Intelligent Off/On Switchable Model -- 6.4 Conclusion and Outlook -- References -- 7 Integrated Foam-Type Electromagnetic Wave Absorption Materials -- 7.1 Carbon-Based Foam for EMW Absorption -- 7.1.1 Pure Carbon-Based Foams -- 7.1.2 Composite Foams Formed by Carbon Material -- 7.1.3 Composite Foams of Carbon Material and Magnetic Metal -- 7.1.4 Composite Foams of Carbon Material and Metal Oxides. |
7.1.5 Composite Foams of Carbon Material and Ceramic Materials -- 7.1.6 Composite Foams of Carbon Material and MXene -- 7.2 Ferrite-Based Foam for EMW Absorption -- 7.3 SiC-Based Foam for EMW Absorption -- 7.4 Conductive Polymer Composites Foam for EMW Absorption -- References -- 8 Integral Gel Electromagnetic Wave Absorption Materials -- 8.1 Dielectric Liquid Medium Gel Electromagnetic Wave Absorption Materials -- 8.1.1 Progress in the Application and Research of Hydrogel EMW Absorption Materials -- 8.1.2 Progress in the Application and Research of Ionic and Organic Gel EMW Absorption Materials -- 8.1.3 Progress in the Research of Poly(Ionic Liquid) Gels -- 8.1.4 Perspectives on Dielectric Liquid Medium Gel EMW-Absorbing Materials -- 8.2 Dielectric Solid Medium Gel EMW Absorption Materials -- 8.2.1 Ceramic-Based Aerogel EMW Absorption Materials -- 8.2.1.1 Preparation Method of Ceramic-Based Aerogel EMW Absorption Materials -- 8.2.1.2 Ceramic-Based Aerogel EMW Absorber Applications and Research Progress -- 8.2.1.3 Polymer-Derived Ceramics Aerogels: EMW Absorber Applications and Research Progress -- 8.2.2 Metal-Based Aerogel EMW Absorption Materials -- 8.2.2.1 Preparation Method of Metal-Based Aerogel Absorption Materials -- 8.2.2.2 Metal Aerogels: EMW Absorber Applications and Research Progress -- 8.2.2.3 Composite Metal-Based Aerogels: EMW Absorber Applications and Research Progress -- 8.3 Prospect of Integral Gel EMW Absorption Materials -- References -- 9 Thin-Film Electromagnetic Wave Absorption Materials -- 9.1 Introduction -- 9.2 Film Electromagnetic Wave Absorption Materials -- 9.2.1 Carbon-Based Composite Films -- 9.2.2 Magnetic Metal Films -- 9.2.3 Thin-Film Materials Composite with Metal Oxides -- 9.2.4 MXene Films -- 9.2.5 Thin-Film Material Composite with Sulfide -- 9.3 The Conclusion and Prospect -- References -- Index -- EULA. |
|
|
|
|
|
|
Sommario/riassunto |
|
Wave Absorbing Materials: Fundamentals and Applications provides a comprehensive overview of the development, properties, and applications of materials designed to absorb electromagnetic waves (EMW). Edited by Hongjing Wu, Jun Luo, and Meiyin Yang, the book explores various types of materials, including metal-organic frameworks (MOFs), MXenes, and high-entropy materials, which are integral to advancing electronic applications. The work delves into the preparation methods, structural properties, and performance metrics of these materials, highlighting their potential in enhancing the efficiency |
|
|
|
|
|
|
|
|
|
|
of electronic devices. The book is targeted towards researchers, engineers, and professionals in materials science and electronic engineering, offering in-depth theoretical and practical insights into the future of wave-absorbing technologies. |
|
|
|
|
|
| |