1.

Record Nr.

UNINA9911011579203321

Autore

Juan : de la Cruz <santo>

Titolo

La notte più felice dell'aurora : poesie / San Juan de la Cruz ; a cura di Marcella Ciceri

Pubbl/distr/stampa

Venezia, : Marsilio, 2010

ISBN

978-88-317-9930-0

Descrizione fisica

136 p. ; 19 cm

Collana

Letteratura universale Marsilio ; 236

Dulcinea

Locazione

FLFBC

Collocazione

861.3 CRUZ 03

Lingua di pubblicazione

Italiano

Spagnolo

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Traduzione italiana a fronte di M. Ciceri



2.

Record Nr.

UNINA9911019659903321

Autore

Stahl Saul

Titolo

Real analysis : a historical approach / / Saul Stahl

Pubbl/distr/stampa

Hoboken, N.J., : Wiley, 2011

ISBN

9786613281142

9781283281140

1283281147

9781118096857

1118096851

9781118096864

111809686X

9781118096840

1118096843

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (316 p.)

Collana

Pure and applied mathematics

Classificazione

MAT005000

Disciplina

515/.8

Soggetti

Mathematical analysis

Functions of real variables

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Real Analysis: A Historical Approach; Contents; Preface to the Second Edition; Acknowledgments; 1 Archimedes and the Parabola; 1.1 The Area of the Parabolic Segment; 1.2 The Geometry of the Parabola; 2 Fermat, Differentiation, and Integration; 2.1 Fermat's Calculus; 3 Newton's Calculus (Part 1); 3.1 The Fractional Binomial Theorem; 3.2 Areas and Infinite Series; 3.3 Newton's Proofs; 4 Newton's Calculus (Part 2); 4.1 The Solution of Differential Equations; 4.2 The Solution of Algebraic Equations; Chapter Appendix: Mathematica Implementations of Newton's Algorithm; 5 Euler

5.1 Trigonometric Series6 The Real Numbers; 6.1 An Informal Introduction; 6.2 Ordered Fields; 6.3 Completeness and Irrational Numbers; 6.4 The Euclidean Process; 6.5 Functions; 7 Sequences and Their Limits; 7.1 The Definitions; 7.2 Limit Theorems; 8 The Cauchy Property; 8.1 Limits of Monotone Sequences; 8.2 The Cauchy Property;



9 The Convergence of Infinite Series; 9.1 Stock Series; 9.2 Series of Positive Terms; 9.3 Series of Arbitrary Terms; 9.4 The Most Celebrated Problem; 10 Series of Functions; 10.1 Power Series; 10.2 Trigonometric Series; 11 Continuity; 11.1 An Informal Introduction

11.2 The Limit of a Function11.3 Continuity; 11.4 Properties of Continuous Functions; 12 Differentiability; 12.1 An Informal Introduction to Differentiation; 12.2 The Derivative; 12.3 The Consequences of Differentiability; 12.4 Integrability; 13 Uniform Convergence; 13.1 Uniform and Nonuniform, Convergence; 13.2 Consequences of Uniform Convergence; 14 The Vindication; 14.1 Trigonometric Series; 14.2 Power Series; 15 The Riemann Integral; 15.1 Continuity Revisited; 15.2 Lower and Upper Sums; 15.3 Integrability; Appendix A: Excerpts from ""Quadrature of the Parabola"" by Archimedes

Appendix B: On a Method for the Evaluation of Maxima and Minima by Pierre de FermatAppendix C: From a Letter to Henry Oldenburg on the Binomial Series (June 13, 1676) by Isaac Newton; Appendix D: From a Letter to Henry Oldenburg on the Binomial Series (October 24, 1676) by Isaac Newton; Appendix E: Excerpts from ""Of Analysis by Equations of an Infinite Number of Terms"" by Isaac Newton; Appendix F: Excerpts from ""Subsiduum Calculi Sinuum"" by Leonhard Euler; Solutions to Selected Exercises; Bibliography; Index

Sommario/riassunto

"Combining historical coverage with key introductory fundamentals, Real Analysis: A Historical Approach, Second Edition helps readers easily make the transition from concrete to abstract ideas when conducting analysis. Based on reviewer and user feedback, this edition features a new chapter on the Riemann integral including the subject of uniform continuity, as well as a discussion of epsilon-delta convergence and a section that details the modern preference for convergence of sequences over convergence of series. Both mathematics and secondary education majors will appreciate the focus on mathematicians who developed key concepts and the difficulties they faced"--



3.

Record Nr.

UNISA996682766903316

Autore

FAUSTO, Domenicantonio

Titolo

[Mauro Scoccimarro, Ministro delle finanze / di D. Fausto e V. Giuria]

Pubbl/distr/stampa

Napoli, : Arte tipografica, 1983

Descrizione fisica

37 p. ; 25 cm

Altri autori (Persone)

GIURIA, Vincenzo

Disciplina

945.0910922

Soggetti

Scoccimarro

Collocazione

XVI.7.Misc. 116

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Titolo dell'intitolazione

Estratto da: I contributi di alcuni economisti alla ricostruzione dell'economia italiana dopo la seconda guerra mondiale : Salerno 26-29 novembre 1981 / incontro promosso dalla Società italiana degli Economisti, Droz : Geneve, 1982