| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990003243900403321 |
|
|
Autore |
Bittanti, Ernesta |
|
|
Titolo |
SCRITTI GEOGRAFICI DI CESARE BATTISTI |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Firenze : Felice Le Monnier, 1923 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019653103321 |
|
|
Autore |
Kumar Santosh |
|
|
Titolo |
Agro-Waste Derived Biopolymers and Biocomposites : Innovations and Sustainability in Food Packaging |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781394175161 |
1394175167 |
9781394175154 |
1394175159 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (474 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
MukherjeeAvik |
KatiyarVimal |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Biopolymers |
Biodegradable plastics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Promising Agro-Wastes for Food Packaging -- 1.1 Introduction -- 1.2 Current Global Status of Agro-Wastes -- 1.3 Types of Agro-Wastes -- 1.3.1 Agro-Industrial Waste -- 1.3.2 Crop Residues -- 1.3.3 Animal Waste -- 1.3.4 Aquatic Waste -- 1.4 Extraction of Biopolymers from Agro-Wastes -- 1.4.1 Chemical Treatment -- 1.4.1.1 Acid Treatment -- 1.4.1.2 Alkali Treatment -- 1.4.1.3 Organic Solvent Treatment -- 1.4.2 Biological Treatment -- 1.4.3 Mechanical Processing -- 1.4.4 Thermochemical Processing -- 1.5 Extraction of Bioactive Compounds from Agro-Wastes -- 1.6 Conclusion and Future Perspectives -- References -- Chapter 2 Natural Fiber-Based Composite for Food Packaging -- 2.1 Introduction -- 2.2 Fiber Types -- 2.2.1 Natural Fibers -- 2.2.1.1 Plant-Based Fibers -- 2.2.1.2 Animal-Based Fibers -- 2.2.2 Man-Made Fibers -- 2.3 Plant Fiber-Based Composite for Food Packaging -- 2.3.1 Wood-Based Composite for Food Packaging -- 2.3.2 Stem/Bast-Based Composite for Food Packaging -- 2.3.2.1 Kenaf Fiber -- 2.3.2.2 Jute Fiber -- 2.3.2.3 Ramie Fiber -- 2.3.2.4 Hemp Fiber -- 2.3.3 Leaf-Based Composite for Food Packaging -- 2.3.3.1 Palm Fiber -- 2.3.3.2 Sisal Fiber -- 2.3.3.3 Pineapple Leaf Fiber -- 2.3.3.4 Banana Fiber -- 2.3.4 Seed/Fruit-Based Composite for Food Packaging -- 2.3.5 Grass-Based Composite for Food Packaging -- 2.3.5.1 Bamboo Fiber -- 2.3.5.2 Rice Husk and Wheat Straw -- 2.4 Animal Fiber-Based Composite for Food Packaging -- 2.4.1 Silk-Based Composite for Food Packaging -- 2.4.2 Wool-Based Composite for Food Packaging -- 2.4.3 Other Animal Fiber-Based Composite -- 2.5 Nanomaterials from Natural Fiber -- 2.6 Natural Fiber-Based Composite for Circular Economy -- 2.7 Conclusion and Future Perspective -- Acknowledgment -- References. |
Chapter 3 Corncob Waste for Food Packaging -- 3.1 Introduction -- 3.2 Isolation of Cellulose from Corncob -- 3.2.1 Pretreatment of Corncob Waste Residues -- 3.2.1.1 Acidic Hydrolysis -- 3.2.1.2 Alkaline Treatment -- 3.2.2 Bleaching Process -- 3.2.3 Extraction of Nanocellulose -- 3.3 Isolation of Hemicellulose from Corncob -- 3.4 Microbial Biosynthesis of Polyhydroxy Butyrate (PHB)from Corncobs -- 3.5 Biopolymers-Based Food Packaging Reinforced with Corncob Fibers -- 3.6 Hybrid Nanocomposite of Corncob for Food Packaging -- 3.7 Conclusion and Future Perspectives -- References -- Chapter 4 Coir Fibers for Sustainable Food Packaging -- 4.1 Introduction -- 4.2 Coir Fibers as Reinforcement Material for Synthetic Polymers -- 4.2.1 Polyethylene-Based Composites Reinforced with Coir Fibers -- 4.2.2 Polypropylene-Based Composites Reinforced with Coir Fibers -- 4.2.3 Polyester-Based Composites Reinforced with Coir Fibers -- 4.3 Coir Fibers as Reinforcement Material in Biopolymers -- 4.3.1 Composites of Coir and Polylactic Acid (PLA) -- 4.3.2 Composites of Coir and Protein -- 4.3.3 Composites of Coir with Starch -- 4.3.4 Hybrid Composites of Coir -- 4.4 Biodegradable Package/Container from Coconut Coir -- 4.5 Conclusion and Future Perspective -- References -- Chapter 5 Sugarcane Bagasse for Sustainable Food Packaging -- 5.1 Introduction -- 5.2 Chemical Composition and Characteristics of Sugarcane Bagasse (SB) -- 5.3 Cellulosic and Hemicellulosic Fractions of Sugarcane Bagasse -- 5.4 Pretreatment Approaches for SB -- 5.4.1 Physical Pretreatments -- 5.4.1.1 Mechanical Pretreatment -- 5.4.1.2 Microwave Pretreatment (MWP) -- 5.4.1.3 Ultrasound Pretreatment (USP) -- 5.4.2 Chemical Pretreatments -- 5.4.2.1 Acidic Pretreatment (AP) -- 5.4.2.2 Alkaline Treatment -- 5.4.2.3 Ionic Liquids Pretreatment -- 5.4.3 Physiochemical Pretreatment. |
5.4.3.1 Organosolv Pretreatments -- 5.4.3.2 Steam Explosion Pretreatment -- 5.4.3.3 Hot Water Pretreatments -- 5.4.4 Biological |
|
|
|
|
|
|
|
|
|
Treatment -- 5.5 Sugarcane Bagasse in Biopolymer Matrix as Reinforcement Filler -- 5.6 Food Containers and Trays Made From SB -- 5.7 Conclusion and Future Perspective -- References -- Chapter 6 Husk and Straw of Cereals Grains for Sustainable Food Packaging -- Abbreviations -- 6.1 Introduction -- 6.2 Extraction and Purification of Cellulose from Husk and Straw 156 -- 6.2.1 Pretreatment Methods -- 6.2.2 Purification Methods -- 6.2.2.1 Alkali Treatment -- 6.2.2.2 Bleaching -- 6.2.3 Extraction Methods -- 6.3 Cellulose Nanocrystals -- 6.3.1 Modifications and Functionalization of CNC -- 6.3.2 Applications of CNC in Packaging Films -- 6.4 Use of Cellulose and Its Derivatives in Food Packaging -- 6.4.1 Cellulose Ethers -- 6.4.1.1 Ethyl Cellulose (EC) and Methyl Cellulose (MC) -- 6.4.1.2 Carboxymethyl Cellulose (CMC) -- 6.4.1.3 Hydroxyethyl Cellulose (HEC) -- 6.4.1.4 Hydroxypropyl Cellulose (HPC) -- 6.4.2 Cellulose Esters -- 6.4.2.1 Cellulose Acetate (CA) -- 6.4.2.2 Cellulose Nitrate (CN) -- 6.4.2.3 Cellulose Sulfate (CS) -- 6.5 Paper-Based Package from Straw and Husk -- 6.6 Tableware and Food Containers from Straw and Husk -- 6.6.1 Compostable and Biodegradable Tableware and Containers -- 6.6.2 Wheat Straw Plastic -- 6.7 Conclusion and Future Perspective -- References -- Chapter 7 Sericulture Waste for Edible Films and Coating of Fruits and Vegetables -- 7.1 Introduction -- 7.2 Sericulture Wastes -- 7.3 Extraction and Purification of Silk Protein/Fibroin -- 7.4 Silk Protein-Based Active Food Packaging -- 7.4.1 Silk Protein/Fibroin-Based Active Films -- 7.4.2 Silk Protein/Fibroin-Based Edible Coating -- 7.5 Toxicological and Food Allergy Assessment of Silk Protein/Fibroin -- 7.6 Conclusion and Future Perspective -- References. |
Chapter 8 Functional Agents from Agro-Waste for Active and Intelligent Food Packaging -- 8.1 Introduction -- 8.2 Functional Agents in Active and Intelligent Packaging -- 8.2.1 Polyphenolic Compounds from Agro-Waste -- 8.2.1.1 Polyphenolic Compounds from Apple Peel -- 8.2.1.2 Polyphenolic Compounds from Citrus Fruit -- 8.2.1.3 Polyphenolic Compounds from Potato Peel -- 8.2.1.4 Polyphenolic Compounds from Pineapple Peel -- 8.2.1.5 Polyphenolic Compounds from Mango Kernel -- 8.2.1.6 Polyphenolic Compounds from Grape -- 8.2.1.7 Polyphenolic Compounds from Pomegranate Peel -- 8.2.1.8 Polyphenolic Compounds from Banana Peel -- 8.2.1.9 Polyphenolic Compounds from Corncob -- 8.2.1.10 Polyphenolic Compounds from Wheat Straw -- 8.2.2 Antioxidants from Agro-Waste -- 8.2.2.1 Antioxidant Compounds from Apple Peel -- 8.2.2.2 Antioxidant Compounds from Citrus Fruit -- 8.2.2.3 Antioxidant Compounds from Potato Peel -- 8.2.2.4 Antioxidant Compounds from Pineapple Peel -- 8.2.2.5 Antioxidant Compounds from Mango Kernel -- 8.2.2.6 Antioxidant Compounds from Grape Pomace -- 8.2.2.7 Antioxidant Compounds from Pomegranate Peel -- 8.2.2.8 Antioxidant Compounds from Banana Peel -- 8.2.2.9 Antioxidant Compounds from Corncob -- 8.2.2.10 Antioxidant Compounds from Wheat Straw -- 8.2.3 Antimicrobials Compounds from Agro-Waste -- 8.2.3.1 Antimicrobials Compounds from Pomegranate Peel -- 8.2.3.2 Antimicrobials Compounds from Grape Pomace -- 8.2.3.3 Antimicrobials Compounds from Mango Kernel -- 8.2.3.4 Antimicrobials Compounds from Citrus Fruit -- 8.2.3.5 Antimicrobials Compounds from Banana Peel -- 8.2.3.6 Antimicrobials Compounds from Pineapple Peel -- 8.2.4 Biobased Indicators -- 8.3 Active and Intelligent Agents in Biopolymer-Based Food Packaging -- 8.3.1 Oxygen and Carbon Dioxide Indicators -- 8.3.2 Moisture or Humidity Indicator -- 8.3.3 pH Indicators. |
8.3.4 Temperature Indicator -- 8.3.5 Specific Chemical Indicator -- 8.4 Conclusion and Perspective -- References -- Chapter 9 Starch from Agro-Waste for Food Packaging Applications -- 9.1 Introduction -- 9.2 |
|
|
|
|
|
|
|
|
|
Starch from Agro-Waste -- 9.2.1 Tuber Wastes -- 9.2.2 Seed Wastes -- 9.3 Modifications in Starch for Food Packaging -- 9.3.1 Chemical Modification -- 9.3.1.1 Acetylation -- 9.3.1.2 Acid Chloride Modification -- 9.3.1.3 Octenyl Succinic Anhydride (OSA) Modification -- 9.3.1.4 Hydropropylation -- 9.3.1.5 Oxidation of Starch -- 9.3.1.6 Cross-Linking of Starch -- 9.3.2 Physical Modification of Starch to Thermoplastic Starch (TPS) -- 9.4 Starch-Based Composite, Nanocomposite, and Hybrid Films -- 9.4.1 Starch-Based Blends -- 9.4.2 Starch-Based Composite and Nanocomposite -- 9.5 Food Packaging Applications -- 9.6 Conclusion and Perspectives -- References -- Chapter 10 Chitosan from Agro-Waste for Food Packaging Applications -- List of Abbreviations -- 10.1 Introduction -- 10.2 Sources of Chitosan -- 10.2.1 Agro-Waste -- 10.2.2 Sources Other Than Agro-Waste -- 10.2.2.1 Terrestrial Insects -- 10.2.2.2 Microbial Sources -- 10.2.2.3 Marine Sources -- 10.3 Chitosan Extraction -- 10.4 Chitosan and Its Functional Properties -- 10.4.1 Antimicrobial Activity -- 10.4.2 Antioxidant Properties -- 10.4.3 Film-Forming Ability -- 10.4.4 Solubility -- 10.5 Chitosan-Based Composites and Nanocomposites -- 10.5.1 Coating Formulations -- 10.5.2 Packaging Films -- 10.6 Food Packaging Applications -- 10.6.1 Fish and Meat Products -- 10.6.2 Fruits and Vegetables -- 10.7 Conclusion and Future Perspectives -- References -- Chapter 11 Biodegradable Synthetic Poly(Lactic Acid) (PLA) for Food Packaging Application -- 11.1 Introduction -- 11.2 Synthesis of PLA -- 11.3 Properties of PLA -- 11.3.1 Composites of PLA -- 11.3.2 Stereocomplex of PLA -- 11.3.2.1 Stereocomplex PLA. |
11.3.2.2 Additives to Enhance Stereocomplexation of PLA. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book explores the innovative use of agro-waste derived biopolymers and biocomposites in food packaging. Edited by experts in the field, it presents a comprehensive overview of current research and developments in using agricultural waste materials such as corncobs, coir fibers, sugarcane bagasse, and cereal husks for sustainable packaging solutions. The book discusses various methods of extracting biopolymers and bioactive compounds from these wastes, highlighting chemical, biological, and mechanical processing techniques. It aims to address environmental concerns by promoting biodegradable and eco-friendly packaging alternatives. The intended audience includes researchers, students, and professionals in food engineering, chemical engineering, and environmental science. |
|
|
|
|
|
|
|
| |