1.

Record Nr.

UNINA9911019643103321

Autore

Mi Haoyang

Titolo

Functional Polymer Foams : Green Fabrication Methods, Performance and Applications

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2025

©2025

ISBN

9783527844609

3527844600

9783527844593

3527844597

9783527844586

3527844589

Edizione

[1st ed.]

Descrizione fisica

1 online resource (368 pages)

Disciplina

668.493

Soggetti

Plastic foams

Foamed materials

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Acknowledgment and Dedications -- Chapter 1 Introduction -- 1.1 Overview of Polymer Foams -- 1.2 Polymer Foaming Methods -- 1.2.1 Mechanical Foaming -- 1.2.2 Physical Foaming -- 1.2.3 Chemical Foaming -- 1.3 Fundamentals of SCF Foaming -- 1.3.1 Preparation of Homogeneous Solution -- 1.3.2 Cell Nucleation -- 1.3.2.1 Homogeneous Foam Nucleation -- 1.3.2.2 Heterogeneous Foam Nucleation -- 1.3.2.3 Mixed Nucleation Theory -- 1.3.3 Cell Growth -- 1.3.4 Cell Coalescence and Rupture -- 1.3.4.1 The Mechanism of Cell Rupture -- 1.3.4.2 Mechanism of Cell Opening -- 1.3.5 Solidification and Curing -- 1.4 Influencing Factors of Cell Structure in the Foaming Process -- 1.4.1 Effects of Polymer Properties -- 1.4.1.1 Rheological Properties of Polymers -- 1.4.1.2 Solubility and Diffusion of Blowing Agent -- 1.4.1.3 Interaction Between Foaming Agent and Polymer Matrix -- 1.4.1.4 Nucleating Agent and Nanoparticles -- 1.4.2 Effects of Foaming Process Parameters -- 1.4.2.1 Foaming Temperature --



1.4.2.2 Saturation Pressure or Foaming Pressure -- 1.4.2.3 Depressurization Rate -- 1.4.2.4 Multistage Saturation and Depressurization -- 1.5 Previlant Foaming Methods for Microcellular Foams -- 1.5.1 Batch Foaming -- 1.5.2 Continuous Extrusion Foaming -- 1.5.3 Injection Foaming Technique -- 1.6 Advanced Applications of Functionalized Polymer Foams -- 1.6.1 Energy Absorbing Buffer Foam -- 1.6.2 Thermal Insulation Polymer Foams -- 1.6.3 Acoustic Absorption Polymer Foams -- 1.6.4 Superhydrophobic Polymer Foams -- 1.6.5 Electromagnetic Shielding Conductive Polymer Foam -- 1.6.6 Medical Tissue Engineering Repair -- 1.6.7 Flexible Sensors Based on Porous Polymer Foams -- 1.6.8 Triboelectric Nanogenerator Based on Polymer Foams -- 1.6.9 Porous Polymers for Solar Steam Generation -- References.

Chapter 2 Energy‐Absorbing Polymer Foams -- 2.1 Overview of Energy‐Absorbing Foam -- 2.1.1 Classification of Energy‐Absorbing Polymer Foams -- 2.1.2 Factors Affecting Mechanical Properties of Polymer Foams -- 2.1.2.1 Relative Density -- 2.1.2.2 Morphological Features of the Cells -- 2.1.2.3 Cell Size Influence on Mechanical Properties -- 2.1.2.4 Matrix Influence on Mechanical Properties -- 2.1.2.5 Effect of Open‐Cells on Mechanical Properties -- 2.2 Energy Absorption Mechanism of Polymer Foams -- 2.2.1 Open‐Cell Structure Model -- 2.2.2 Closed‐Cell Foam -- 2.2.3 Other Special Structural Models -- 2.2.4 Energy Dissipation Mechanism of Polymer Foams -- 2.2.5 Effect of the Matrix Material -- 2.3 Testing and Characterization of Energy‐Absorbing Foams -- 2.3.1 Morphology Characterization -- 2.3.2 Quasistatic Compression Test -- 2.3.3 Dynamic Compression Test -- 2.3.4 Rebound Performance and Hysteresis Testing -- 2.4 Preparation Methods of Energy‐Absorbing Polymer Foam -- 2.4.1 Open‐Cell Foams -- 2.4.2 Closed‐Cell Foams -- 2.4.3 Composite Foams -- 2.4.4 Special‐Structured Foams -- 2.5 Applications of Energy‐Absorbing Polymer Foams -- 2.5.1 Energy‐Absorbing Foams in Sports -- 2.5.2 Energy‐Absorbing Foams for House and Home -- 2.5.3 Energy‐Absorbing Foams for Transportation and Vehicles -- 2.5.4 Energy‐Absorbing Foams for Security and Military -- References -- Chapter 3 Thermal Insulation Polymer Foams -- 3.1 Overview of Thermal Insulation Foams -- 3.2 Fundamentals of Thermal Insulation -- 3.2.1 The Convection of Heat Transfer -- 3.2.2 Thermal Conduction of Gases and Solids -- 3.2.3 Thermal Radiation -- 3.3 Performance and Characterization -- 3.3.1 Property Characterization Methods -- 3.3.1.1 Thermal Conductivity Measurements -- 3.3.1.2 Porosity (p)Measurement for a Polymer Foam -- 3.3.1.3 Thermal Deformation Measurement.

3.3.2 Factors Affecting Thermal Conductivity -- 3.3.2.1 Pore Size and Porosity -- 3.3.2.2 Temperature -- 3.3.2.3 Material Refractive Index -- 3.4 Fabrication of Thermal Insulation Polymer Foams -- 3.4.1 Composite Polymer Matrices -- 3.4.2 Fabrication of Bimodal Foams -- 3.4.3 Fabrication of Closed‐Cell Foams -- 3.4.4 Fabrication of Polymer Foams with Honeycomb Structures -- 3.4.5 Fabrication of Nanocellular Polymer Foams -- 3.5 Other Thermal Insulation Polymer Foams -- 3.5.1 Microcellular Polyimide (PI) Foams -- 3.5.2 Phenolic Foams Chilled Water Piping -- 3.5.3 Spray Polyurethane Foam -- 3.5.4 Thermal Insulation Aerogels -- References -- Chapter 4 Acoustic Absorption Polymer Foams -- 4.1 Overview of Sound Absorption and Noise Reduction Foams -- 4.2 Fundamentals of Acoustic Absorption of Polymer Foams -- 4.2.1 Propagation and Absorption of Sound Waves -- 4.2.2 Sound Absorption Principle and Models -- 4.3 Characterization and Influencing Factors for Sound -- 4.3.1 Characterization of Sound Absorption Properties -- 4.3.1.1 Sound Absorption Coefficient (α) Measurement -- 4.3.1.2 Porosity



Measurement -- 4.3.1.3 Cell Diameter, Cell Density, and Open‐Cell Content -- 4.3.1.4 Tortuosity α∞ Measurement -- 4.3.1.5 Airflow Resistance Measurement -- 4.3.2 Factors Affecting Sound Absorption Performance -- 4.3.2.1 Effect of Cellular Morphology -- 4.3.2.2 Macro Shape and Geometry of Polymer Foam -- 4.3.2.3 Resistance of Airflow -- 4.3.2.4 Tortuosity Factor -- 4.4 Types of Acoustic Absorption Foams -- 4.4.1 Sound Absorption Ceramic -- 4.4.2 Sound Absorption Metallic Foam -- 4.4.3 Sound Absorption Polymer Foam -- 4.4.4 Sound Absorption Polymer Composite Foam -- 4.5 Fabrication of Acoustic Absorption Polymer Foams -- 4.5.1 Chemical Foaming -- 4.5.2 Supercritical CO2 Foaming -- 4.5.3 Coating of Foam Skeletons -- 4.5.4 Phase Separation and Particulate Leaching.

References -- Chapter 5 Superhydrophobic Polymer Foams -- 5.1 Overview of Superhydrophobic Polymer Foams -- 5.1.1 Superhydrophobicity in Nature -- 5.1.2 Influencing Factors for Superhydrophobicity -- 5.1.2.1 Surface Energy -- 5.1.2.2 Surface Structure -- 5.1.3 Methods to Engineer Hierarchical Structured Surface -- 5.1.3.1 Surface Treatment Method -- 5.1.3.2 Etching Method -- 5.1.3.3 Phase Separation Method -- 5.1.3.4 Template Replicating -- 5.1.3.5 Electrostatic Spinning -- 5.2 Theoretical Basis of Superhydrophobicity -- 5.2.1 Wetting on a Solid Surface -- 5.2.2 Wetting on Rough Surfaces -- 5.2.3 Cassie-Baxter Model -- 5.2.4 Theoretical Basis for 3D Porous Foams -- 5.3 Characterizations of Superhydrophobic Foams -- 5.3.1 Morphological Characterization -- 5.3.1.1 Scanning Electron Microscope (SEM) -- 5.3.1.2 Atomic Force Microscope (AFM) -- 5.3.1.3 White‐Light Interferometry (WLI) -- 5.3.2 Surface Chemistry and Wettability Characterization -- 5.3.2.1 Surface Chemistry Characterization -- 5.3.2.2 Surface Wettability Characterization -- 5.3.3 Selective Oil Adsorption Experiments -- 5.3.4 Absorption Capacity of Superhydrophobic Foams -- 5.4 Superhydrophobic Foam Preparation Technology -- 5.4.1 Nanoparticle/Porous Material Complexes -- 5.4.2 Superhydrophobic Foams Prepared by Phase Separation -- 5.4.3 Superhydrophobic Aerogels -- 5.4.4 Superhydrophobic Fibrous Sponge Prepared by Electrospinning -- 5.4.5 Superhydrophobic Foams Fabricated via Supercritical CO2 Foaming -- 5.5 Advanced Application of Superhydrophobic Polymer Foams -- 5.5.1 Self‐Cleaning and Antifouling -- 5.5.2 Oil-Water Separation and Oil Absorption -- 5.5.3 Integration with Other Functions -- 5.5.3.1 Superhydrophobic Foams for Electromagnetic Interference (EMI) Shielding -- 5.5.3.2 Superhydrophobic Foams for Piezoresistive Sensors -- 5.5.3.3 Superhydrophobic Foams for Radiative Cooling.

5.5.3.4 Superhydrophobic Surfaces for Nanogenerators -- References -- Chapter 6 Electromagnetic Shielding Polymer Foams -- 6.1 Electromagnetic Pollution and Electromagnetic Interference Shielding -- 6.1.1 The Cause of Electromagnetic Radiation and Its Harm -- 6.1.2 Electromagnetic Interference Shielding Mechanism -- 6.1.3 EMI Shielding Mechanism for Porous Materials -- 6.2 Conventional EMI Shielding Materials and Conductive Polymer Foams -- 6.2.1 Conventional EMI Shielding Materials -- 6.2.2 Conductive Polymer Foams -- 6.3 Characterization of EMI Shielding Polymer Foams -- 6.3.1 EMI Shielding Effectiveness Measurement -- 6.3.2 EM Wave Absorption -- 6.3.3 Electrical Conductivity -- 6.3.4 Magnetic Property -- 6.4 Preparation of EMI Shielding Polymer Foams -- 6.4.1 Composition of EMI Shielding Polymer Foams -- 6.4.2 Factors Influence EMI Shielding Performance of Polymer Foams -- 6.4.2.1 Conductivity and Magnetic Properties -- 6.4.2.2 Material Thickness and Resonance Behavior -- 6.4.2.3 Cell Size, Cell Density, and Porosity -- 6.4.3 Foaming Methods



for Conductive Polymer Foams -- 6.4.3.1 Chemical Foaming of EMI Shielding CPFs -- 6.4.3.2 Supercritical CO2 Foaming of EMI Shielding CPFs -- 6.4.4 EMI Shielding CPFs with Special Microstructures -- 6.4.4.1 Reentrant Cell Structure -- 6.4.4.2 Oriented Cell Structure -- 6.4.4.3 Segregated Cell Structure -- 6.4.4.4 Gradient Cell Structure -- 6.4.4.5 Layered Foam Structure -- 6.5 Advanced Research on EMI Shielding Porous Composites -- 6.5.1 EMI Shielding Aerogels -- 6.5.2 EMI Shielding Fibrous Networks -- 6.5.3 Metal‐Based EMI Shielding Porous Materials -- 6.5.4 Surface Coated/Modified Foams for EMI Shielding -- References -- Chapter 7 Polymer Foams for Tissue Engineering Scaffolds -- 7.1 Overview of Tissue Engineering -- 7.1.1 Basic Elements of Tissue Engineering -- 7.1.2 Tissue Engineering Scaffold Materials.

7.2 Fundamentals of Tissue Engineering.

Sommario/riassunto

A one-of-a-kind exploration of the fundamentals of functional polymer foams, including their fabrication and a variety of their most common applications   In Functional Polymer Foams: Green Fabrication Methods, Performance and Applications, distinguished researcher Dr. Hao-Yang Mi delivers an up-to-date and incisive discussion of the fundamentals of functional polymer foams, as well as their fabrication methods and a diverse set of applications. The author covers a variety of the material's applications, including energy absorption, acoustic absorption, superhydrophobic materials, tissue engineering scaffolding, flexible sensors, and solar steam generation.   Readers will find comprehensive summaries of the mechanisms, fabrication methods, and relative performance of various polymer foams, as well as:    * A thorough introduction to functional polymer foams, including the fundamentals of SCF foaming  * Comprehensive explorations of energy absorbing polymer foams, including mechanisms of action, testing, and characterization  * Practical discussions of functional polymer foams used in thermal insulation, including their fabrication  * Complete treatments of acoustic absorption polymer foams and superhydrophobic foams, including advanced applications  Perfect for polymer chemists, materials scientists, and researchers working in the sensor industry, Functional Polymer Foams will also benefit sensor developers and electronics engineers with an interest in the fabrication methods and applications of functional polymer foams.