| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910484715203321 |
|
|
Titolo |
Artificial intelligence and soft computing [[electronic resource] ] : 10th international conference, ICAISC 2010, Zakopane, Poland, June 13-17, 2010 . Part II / / Leszek Rutkowski ... [et al.], (eds.) |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, : Springer, c2010 |
|
|
|
|
|
|
|
ISBN |
|
1-280-38672-X |
9786613564641 |
3-642-13232-4 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2010.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (711 p. 296 illus.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in computer science, , 0302-9743 ; ; 6114 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Artificial intelligence |
Soft computing |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Neural Networks and Their Applications -- Evolutionary Algorithms and Their Applications -- Agent Systems, Robotics and Control -- Various Problems of Artificial Intelligence. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019642603321 |
|
|
Autore |
Mohammed Saif Khan |
|
|
Titolo |
OTFS Modulation : Theory and Applications |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781119984214 |
1119984211 |
9781119984221 |
111998422X |
9781119984207 |
1119984203 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (451 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
HadaniRonny |
ChockalingamAnanthanarayanan |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Modulation (Electronics) |
Wireless communication systems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Acronyms -- Chapter 1 Introduction -- 1.1 Cellular Mobile Evolution -- 1.1.1 Moore's Law Drives Rate Increase -- 1.2 Multipath Fading Channels -- 1.2.1 Frequency Domain Characterization -- 1.2.2 Time Domain Characterization -- 1.2.3 Impact of High Dopplers -- 1.2.4 Delay‐Doppler Domain Characterization -- 1.2.4.1 Urban Multi‐lane Scenario − An Example -- 1.3 Communication Waveforms for Doubly Selective Channels -- 1.3.1 OTFS - A Modulation Waveform for Doubly Selective Channels -- 1.3.2 OTFS Realization - Two Approaches -- 1.4 Waveforms for Radar Sensing -- 1.4.1 OTFS for Integrated Sensing and Communication -- 1.5 Organization of the Book -- Chapter 2 Delay‐Doppler Signaling and OTFS Modulation -- 2.1 Delay‐Doppler Domain -- 2.2 Time and Frequency Domain Modulation -- 2.2.1 Channel Interaction of a TD Pulse -- 2.2.1.1 h3δ(t−3μs) -- 2.2.1.2 h4ej2πν4t0δ(t−4μs) and |
|
|
|
|
|
|
|
|
|
h4ej2πν4t1δ(t−4μs) -- 2.2.1.3 h1+h2ej2πν2t0δ(t−2μs) and h1+h2ej2πν2t1δ(t−2μs) -- 2.2.2 Channel Interaction of a FD Pulse -- 2.2.2.1 h2e−j2π(f0+ν2)τ2δ(f+950Hz) -- 2.2.2.2 h1e−j2πf0τ1+h3e−j2πf0τ3δ(f) -- 2.3 Delay‐Doppler (DD) Domain Modulation -- 2.3.1 Origin of Quasi‐periodicity -- 2.4 Channel Interaction of a DD Domain Pulse -- 2.4.1 The Channel Interaction is Predictable -- 2.4.2 The Channel Interaction is Non‐fading -- 2.4.3 The Channel Interaction is Non‐stationary -- 2.5 Time‐ and Bandwidth‐Limited DD Domain Carrier Waveforms -- 2.5.1 Example in Fig. 2.17 -- 2.5.2 Orthogonality of Pulsones -- 2.5.3 Optimality as Time‐ and Bandwidth‐limited Signals -- 2.5.4 TDM as a Limiting Case -- 2.5.5 FDM as a Limiting Case -- 2.5.6 TD Pulsones Encode Wireless Channel Dynamics -- 2.5.7 The Fourier Transform as a Composition -- 2.6 Zak‐OTFS Modulation and I/O Relation -- 2.6.1 Generalized Transceiver Signal Processing. |
2.6.2 Zak‐OTFS Modulation -- 2.6.3 Zak‐OTFS Receiver -- 2.6.4 Zak‐OTFS I/O Relation -- 2.7 Predictability of the Zak‐OTFS I/O Relation in the Crystalline Regime -- 2.7.1 Non‐predictability of the Zak‐OTFS I/O Relation in the Non‐crystalline Regime -- 2.7.2 Crystalline Decomposition -- 2.7.3 Identification of Linear Time‐Varying Channels -- 2.7.4 Error in Prediction of the Zak‐OTFS I/O Relation -- 2.8 Matrix‐vector Description of the I/O Relation -- 2.8.1 Zak‐OTFS -- 2.8.2 TDM -- 2.8.3 FDM -- 2.9 Impact of Fading in the Crystalline Regime -- 2.10 Model‐free Operation in the Crystalline Regime -- 2.10.1 Model‐dependent Operation -- 2.10.2 Model‐free Operation -- 2.11 Summary -- 2.A.1 Properties of Twisted Convolution -- 2.F.1 Inverse Time‐Zak Transform -- 2.F.2 Derivation of (2.38) -- 2.F.3 Inverse Frequency‐Zak Transform -- 2.J.1 Proof of Theorem 2.5 -- 2.K.1 Proof of Theorem 2.6 -- 2.L.1 Impulse Signal in Discrete DD Domain -- Chapter 3 Approximations of OTFS Modulation -- 3.1 Pulsones as a Basis for TD Signals -- 3.2 Generating Pulsones Using the Heisenberg Transform -- 3.3 Generating Time‐ and Bandwidth‐Limited Pulsones -- 3.3.1 Comparing MC Pulsones with Zak Pulsones -- 3.4 Multicarrier OTFS (MC‐OTFS) Modulation -- 3.4.1 Two‐step MC‐OTFS Modulator -- 3.4.2 Zak Transform‐Based MC‐OTFS Modulator -- 3.5 MC‐OTFS Receiver -- 3.5.1 Two‐step MC‐OTFS Receiver -- 3.5.2 Zak Transform‐Based MC‐OTFS Receiver -- 3.6 MC‐OTFS I/O Relation -- 3.6.1 MC‐OTFS I/O for a Two‐Step Transceiver -- 3.6.2 MC‐OTFS I/O Relation for Zak Transform‐Based Transceiver -- 3.7 Comparing MC‐OTFS to Zak‐OTFS -- Chapter 4 Delay‐Doppler Diversity in OTFS -- 4.1 Diversity in SISO OTFS -- 4.1.1 System Model -- 4.1.2 Diversity Analysis -- 4.1.3 Full Diversity with Phase Rotation -- 4.2 Diversity in MIMO‐OTFS -- 4.2.1 MIMO‐OTFS Diversity Analysis -- 4.2.2 MIMO‐OTFS with Phase Rotation. |
4.3 Diversity in Space-Time Coded OTFS -- 4.3.1 STC‐OTFS Scheme -- 4.3.1.1 Encoding and Decoding -- 4.3.1.2 Diversity Analysis -- 4.3.1.3 Phase Rotation in STC‐OTFS -- 4.4 Diversity in OTFS with Antenna Selection -- 4.4.1 MIMO‐OTFS with RAS -- 4.4.2 STC‐OTFS with RAS -- 4.4.3 Rank of Multi‐antenna OTFS Systems -- 4.4.4 Analysis of Multiantenna OTFS with RAS -- 4.4.5 Rank Deficient Multi‐antenna OTFS Systems with RAS -- Chapter 5 OTFS Signal Detection -- 5.1 Linear Detection -- 5.1.1 Reduced Complexity MMSE Detection -- 5.1.1.1 Complexity Reduction Scheme 1 -- 5.1.1.2 Complexity Reduction Scheme 2 -- 5.2 Approximate MAP‐Based Detection -- 5.2.1 Message Passing Detection -- 5.2.2 Variational Bayes‐Based Detection -- 5.2.3 Hybrid MAP and PIC Detection -- 5.2.4 MCMC Sampling‐Based Detection -- 5.3 Cross‐Domain Detection -- Chapter 6 Delay‐Doppler Channel Estimation -- 6.1 PN Pilot‐Based Estimation -- 6.1.1 Solving for (δi,ωi,αi) -- 6.1.2 Performance Results -- 6.2 Exclusive Pilot |
|
|
|
|
|
|
|
Approach -- 6.2.1 Impulse‐Based Channel Estimation -- 6.2.1.1 Integer DD and Fractional DD -- 6.2.2 DDIPIC‐Based Estimation -- 6.2.2.1 Coarse Estimation -- 6.2.2.2 Fine Estimation -- 6.2.2.3 Stopping Criterion -- 6.2.2.4 Refinement of Parameters -- 6.2.2.5 Choice of ϵ -- 6.2.2.6 Complexity -- 6.2.2.7 Performance -- 6.3 Embedded Pilot Approach -- 6.3.1 Embedded Pilot with Guard Symbols -- 6.3.1.1 Threshold‐Based Estimation -- 6.3.2 Embedded Pilot Without Guard Symbols -- 6.3.2.1 System Model -- 6.3.2.2 Embedded Frame Structure -- 6.3.2.3 SBL‐Based Estimation -- 6.4 Superimposed Pilot Approach -- 6.4.1 System Model -- 6.4.2 SP‐NI Scheme -- 6.4.3 SP‐I Scheme -- 6.4.4 Performance -- Chapter 7 Multiuser OTFS -- 7.1 Resource Elements -- 7.2 OTFS Uplink -- 7.2.1 Orthogonal Multiple Access (OMA) -- 7.2.1.1 Guard Band (GB)‐Based OMA -- 7.2.1.2 Interleaved Delay‐Doppler OMA. |
7.2.1.3 Interleaved Time‐Frequency OMA -- 7.2.1.4 Performance of OTFS‐Based OMA Methods with Ideal Pulses -- 7.2.1.5 Performance of OTFS‐Based OMA Methods with Practical Rectangular Pulses -- 7.2.2 Non‐orthogonal Multiple Access -- 7.2.2.1 Multiuser MIMO‐OTFS Uplink -- 7.2.2.2 Massive MIMO‐OTFS -- 7.3 OTFS Downlink -- 7.3.1 Downlink Precoding -- 7.3.1.1 Linear Precoding -- 7.3.1.2 Nonlinear Precoding -- 7.3.2 Massive MIMO‐Based OTFS Downlink -- 7.3.2.1 MRT‐Based Massive MIMO‐OTFS Precoding -- 7.4 Multiuser Channel Estimation -- 7.5 Synchronization -- 7.5.1 Frequency Synchronization -- 7.5.2 Timing Synchronization -- 7.5.2.1 Uplink Timing Synchronization in OFDM‐Based Systems -- 7.5.2.2 Uplink Timing Synchronization in OTFS‐Based Systems -- 7.5.2.3 Downlink Timing Synchronization in OTFS‐Based Systems -- Chapter 8 Practical Considerations in OTFS Systems -- 8.1 PAPR of MC‐OTFS Signals -- 8.1.1 MC‐OTFS Transmit Signal -- 8.1.2 Upper Bound on PAPR -- 8.1.3 CCDF of PAPR -- 8.1.4 Results -- 8.1.4.1 Effect of Increasing M and N on the CCDF of PAPR -- 8.1.4.2 Effect of Pulse Shaping on PAPR -- 8.1.4.3 Comparison with GFDM and OFDM -- 8.2 Impact of Phase Noise on OTFS -- 8.2.1 System Model Without Phase Noise -- 8.2.2 System Model with Phase Noise -- 8.2.3 Performance in the Presence of Phase Noise -- 8.3 Impact of IQ Imbalance on OTFS -- 8.3.1 OTFS System Model with IQI -- 8.3.1.1 System Model with Transmitter IQI -- 8.3.1.2 System Model with Receiver IQI -- 8.3.2 Sensitivity of OTFS and OFDM to IQI -- 8.4 Discrete Zak Approach to OTFS -- 8.4.1 DZT‐OTFS System Model -- 8.4.2 Vectorized DD Domain I/O Relation -- 8.4.3 Diversity Analysis of DZT‐OTFS -- 8.4.4 Performance Results -- 8.4.4.1 Diversity Performance -- 8.4.4.2 BER Performance -- 8.4.4.3 Complexity -- 8.A.1 Digital Implementation of the Zak‐OTFS Receiver. |
8.A.2 Digital Implementation of the Zak‐OTFS Transmitter -- 8.B.1 Discrete Delay and Doppler Shifts -- 8.B.2 Discrete Pulsones -- Chapter 9 Deep Learning for OTFS Transceiver Design -- 9.1 Learning Framework -- 9.1.1 Classification of Machine Learning Programs -- 9.1.1.1 Classification Based on Training Dataset -- 9.1.1.2 Classification Based on Nature of Objective -- 9.1.2 Traditional Program and Machine Learning Program -- 9.1.3 Deep Learning Using Neural Networks -- 9.1.3.1 Fully Connected Neural Networks -- 9.1.3.2 Recurrent Neural Networks -- 9.1.3.3 Convolutional Neural Networks -- 9.1.4 Common Terminologies in the DL Framework -- 9.2 OTFS Signal Detection Using DNNs -- 9.2.1 Full‐DNN Detection Approach -- 9.2.2 Symbol‐DNN Detection Approach -- 9.2.2.1 Training and Testing -- 9.2.3 Performance Results -- 9.2.3.1 Static Channel with i.i.d. Gaussian Noise -- 9.2.3.2 Static Channel with Non‐Gaussian Noise -- 9.2.3.3 Doppler Channel with Non‐Gaussian Noise -- 9.2.3.4 Correlated Gaussian Noise in MIMO‐OTFS -- 9.3 IQI |
|
|
|
|
|
|
|
|
|
Estimation/Compensation Using DNNs -- 9.3.1 DNN‐Based OTFS Transceiver -- 9.3.1.1 Tx IQI Compensation -- 9.3.1.2 Rx IQI Compensation -- 9.3.1.3 Channel Training and Detection -- 9.3.2 Performance Results -- 9.3.2.1 Tx IQI Compensation -- 9.3.2.2 Rx IQI Compensation -- 9.3.2.3 Channel Training and Detection -- 9.3.2.4 Combined Performance of All DNNs -- 9.4 DD Channel Estimation Using DNNs -- 9.4.1 Estimation Using Embedded Pilots -- 9.4.1.1 Architecture -- 9.4.1.2 Training Methodology -- 9.4.1.3 Inference from the Network -- 9.4.1.4 Performance Results -- 9.4.2 Estimation Using Interleaved Pilots -- 9.4.2.1 Architecture -- 9.4.2.2 Training Methodology -- 9.4.2.3 Estimation of Delay and Doppler Indices -- 9.4.2.4 Complexity -- 9.4.2.5 Performance Results -- 9.4.3 Estimation Using Superimposed Pilots -- 9.4.3.1 Iterative Scheme. |
9.4.3.2 Performance Results. |
|
|
|
|
|
|
Sommario/riassunto |
|
Grasp the future of wireless communication with this groundbreaking introduction Research and development are already underway on the sixth generation (6G) of wireless communication technology. The new requirements of 6G that arise from challenging new use cases render physical layer waveforms such as CDMA and OFDM inadequate. The OTFS waveform answers these new requirements, and recent research suggests it will play a decisive role in the future of wireless communication. OTFS Modulation: Theory and Applications provides the first ever foundational textbook that introduces this growing, state-of-the-art, field of research from first principles. Beginning with a thorough discussion of the fundamental principles of OTFS, both physical and theoretical, it rigorously situates OTFS modulation in a mathematical framework analogous to more familiar waveforms. The result is a groundbreaking contribution to communication theory and a must-have volume for wireless communication researchers. Readers will find: * An expert author team including the inventor of OTFS modulation * Detailed discussion of topics including the Zak theory of linear time-varying systems, delay-Doppler communication and radar sensing, machine learning, and many more * MATLAB ™ code for OTFS transceiver implementation OTFS Modulation: Theory and Applications is ideal for researchers, engineers, graduate and advanced undergraduate students, and standardization professionals working with wireless communication, signal processing, and radar sensing. |
|
|
|
|
|
|
|
| |