1.

Record Nr.

UNINA9911020268803321

Autore

Zhu Yu

Titolo

Multigrid finite element methods for electromagnetic field modeling / / Yu Zhu, Andreas C. Cangellaris

Pubbl/distr/stampa

Hoboken, N.J., : Wiley-IEEE, c2006

ISBN

9786610349784

9781280349782

1280349786

9780470362549

0470362545

9780471786382

0471786381

9780471786375

0471786373

Descrizione fisica

1 online resource (438 p.)

Collana

IEEE Press series on electromagnetic wave theory

Altri autori (Persone)

CangellarisAndreas C

Disciplina

530.141

621.38132

Soggetti

Electromagnetic fields - Mathematical models

Multigrid methods (Numerical analysis)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

List of Figures. -- List of Tables. -- Preface. -- Acknowledgments. -- 1. Introduction. -- 2. Hierarchical Basis Functions for Triangles and Tetrahedra. -- 3. Finite Element Formulations of Electromagnetic BVPs. -- 4. Iterative Methods, Preconditioners, and Multigrid. -- 5. Nested Multigrid Preconditioner. -- 6. Nested Multigrid Vector and Scaler Potential Preconditioner. -- 7. Hierarchical Multilevel and Hybrid Potential Preconditioners. -- 8. Krylov-Subspace Based Eigenvalue Analysis. -- 9. Two-Dimensional Eigenvalue Analysis of Waveguides. -- 10. Three-Dimensional Eigenvalue Analysis of Resonators. -- 11. Model Order Reduction of Electromagnetic Systems. -- 12. Finite Element Analysis of Periodic Structures. -- Appendix A: Identities and Theorems from Vector Calculus. -- Index.



Sommario/riassunto

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.



2.

Record Nr.

UNINA9911019640903321

Titolo

Multimedia information extraction : advances in video, audio, and imagery analysis for search, data mining, surveillance, and authoring / / edited by Mark T. Maybury

Pubbl/distr/stampa

Hoboken, N.J., : Wiley, 2012

ISBN

9786613862259

9781283549806

1283549808

9781118219546

1118219546

9781118219522

111821952X

9781118219515

1118219511

Descrizione fisica

1 online resource (498 p.)

Classificazione

COM034000

Altri autori (Persone)

MayburyMark T

Disciplina

006.3/12

Soggetti

Data mining

Metadata harvesting

Computer files

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

section 1. Image extraction -- section 2. Video extraction -- section 3. Audio, graphics, and behavior extraction -- section 4. Affect extraction from audio and imagery -- section 5. Multimedia annotation and authoring.

Sommario/riassunto

"The advent of increasingly large consumer collections of audio (e.g., iTunes), imagery (e.g., Flickr), and video (e.g., YouTube) is driving a need not only for multimedia retrieval but also information extraction from and across media. Furthermore, industrial and government collections fuel requirements for stock media access, media preservation, broadcast news retrieval, identity management, and video surveillance. While significant advances have been made in language



processing for information extraction from unstructured multilingual text and extraction of objects from imagery and video, these advances have been explored in largely independent research communities who have addressed extracting information from single media (e.g., text, imagery, audio). And yet users need to search for concepts across individual media, author multimedia artifacts, and perform multimedia analysis in many domains.This collection is intended to serve several purposes, including reporting the current state of the art, stimulating novel research, and encouraging cross-fertilization of distinct research disciplines. The collection and integration of a common base of intellectual material will provide an invaluable service from which to teach a future generation of cross disciplinary media scientists and engineers. "--