1.

Record Nr.

UNINA9911019637103321

Autore

Horváth András

Titolo

Phase Type Distributions, Volume 2 : Theory and Application

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2022

©2024

ISBN

9781119419808

1119419808

9781394329908

1394329903

9781394329892

139432989X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (280 pages)

Altri autori (Persone)

TelekMiklós

Soggetti

Stochastic processes

Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- TTitle Page -- Copyright Page -- Contents -- Introduction -- Chapter 1. Mathematical Background --   1.1. Basic properties of random variables --   1.2. Moments of random variables and related quantities --   1.3. Laplace transformation --   1.4. z transform --   1.5. Matrix functions of quadratic matrices --   1.6. Matrix inverse --   1.7. Eigenvalues and the characteristic polynomial --   1.8. Spectral decomposition --   1.9. Ordinary differential equation of vector functions --   1.10. Exponential distribution --   1.11. Erlang distribution --   1.12. Discrete time Markov chain --   1.13. Continuous time Markov chain --   1.14. Kronecker algebra -- Chapter 2. Continuous Phase Type Distributions --   2.1. Definition and basic properties --   2.2. Stochastic meaning of (-A)-1 --   2.3. Rational Laplace transform --   2.4. Decomposition of matrix exponential functions --   2.5. Similarity transformation --     2.5.1. Similarity transformation with identical sizes --     2.5.2. Similarity transformation with different sizes --     2.5.3. Full rank representation --   2.6. Closure properties



Sommario/riassunto

This book, authored by András Horváth and Miklós Telek, delves into the theoretical foundations and applications of phase type distributions in stochastic models, with a particular focus on computer science and network systems. It presents a comprehensive overview of mathematical concepts such as random variables, matrix functions, Markov chains, and differential equations, essential for understanding phase type distributions. The authors aim to provide readers with a detailed understanding of both continuous and discrete phase type distributions, their properties, and applications. This work is intended for researchers, academics, and professionals in the fields of mathematics, computer science, and engineering who are interested in stochastic modeling and its applications.