1.

Record Nr.

UNINA9911019569503321

Autore

Tripathi Suman Lata

Titolo

Nanodevices for Integrated Circuit Design

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2023

©2023

ISBN

9781394186389

139418638X

9781394186396

1394186398

Edizione

[1st ed.]

Descrizione fisica

1 online resource (304 pages)

Altri autori (Persone)

KumarAbhishek

Srinivasa RauK

MudimelaPrasantha R

Soggetti

Nanotechnology

Integrated circuits

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgements -- Chapter 1 Growth of Nano-Wire Field Effect Transistor in 21st Century -- 1.1 Introduction -- 1.2 Initial Works on Nanowire Field-Effect-Transistors (NW-FET) -- 1.2(A) Theoretical and Simulation Studies on Nanowire FET (NW-FET) -- 1.2(B) Fabrication of Nanowire Field-Effect-Transistor (NW-FET) -- 1.3 Application of Nanowire Field-Effect-Transistors (NW-FET) -- 1.4 Conclusion -- References -- Chapter 2 Impact of Silicon Nanowire-Based Transistor in IC Design Perspective -- 2.1 Introduction -- 2.2 Nanoscale Devices -- 2.2.1 Carbon Nanostructures -- 2.2.2 Nanoelectromechanical Systems -- 2.2.3 Graphene-Based Transistors -- 2.2.4 Silicon Nanowire Based Devices -- 2.3 Nanowire Heterostructures and Silicon Nanowires -- 2.3.1 Characteristics of SiNWs -- 2.3.2 Fabrication -- 2.3.3 Applications of SiNWs -- 2.4 Performance Analysis of Si Nanowire with SOI FET -- 2.5 Conclusion -- References -- Chapter 3 Kink Effect in Field Effect Transistors: Different Models and Techniques -- 3.1 Introduction -- 3.2 Techniques of Kink



Effect -- 3.2.1 Current-Voltage Technique -- 3.2.2 Pulsed I-V Technique -- 3.2.3 Capacitance-Voltage Technique -- 3.3 Different Models of Kink Effect -- 3.4 Kink Effect in MOS Capacitors -- 3.4.1 Incomplete Ionization Model -- 3.4.2 Simulation of the Kink Effect in MOS Capacitor -- 3.4.2.1 Effect of the Variation of Activation Energy -- 3.4.2.2 Effect of the Variation of Traps Density -- 3.4.2.3 Effect of the Variation of Capture Cross Section -- 3.4.3 Comparison Between Experimental and Simulation Results -- 3.4.3.1 Hysteresis Effect on the C-V Characteristics -- 3.4.3.2 Proof of the Origin of Kink Effect -- 3.5 Conclusion -- References.

Chapter 4 Next Generation Molybdenum Disulfide FET: Its Properties, Evaluation, and Its Applications -- 4.1 Introduction of Two-Dimensional Materials -- 4.2 Evaluation of 2D-Materials -- 4.3 Overview of MoS2 -- 4.3.1 Why MoS2 -- 4.3.2 MoS2 Structured Design -- 4.4 Properties of MoS2 -- 4.4.1 Bulk Characteristics -- 4.4.2 Electrical and Optical Characteristics -- 4.4.2.1 BandGap -- 4.4.2.2 Photoluminescence Spectra -- 4.4.2.3 Injection of Electrons -- 4.4.2.4 Transistor -- 4.4.3 Mechanical Properties -- 4.4.3.1 Valleytronics -- 4.4.3.2 Optical Transitions -- 4.4.3.3 Spin-Orbit Valence Band -- 4.5 Fabrication of MoS2 -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Intercalation -- 4.5.3 Solvent Exfoliation -- 4.5.4 Chemical Vapor Deposition (CVD) -- 4.6 Applications of MoS2 -- 4.6.1 Solid Lubricants -- 4.6.2 Electronic Applications -- 4.6.3 Field-Effect Transistor -- 4.6.4 Switching Transistor -- 4.6.5 Nano-Structures -- 4.6.6 Biosensors -- 4.6.7 FET-Based Biosensors -- 4.7 Comparison of Other 2D Materials with MoS2 -- 4.8 Conclusion -- References -- Chapter 5 Impact of Working Temperature on the ION/IOFF Ratio of a Hetero Step-Shaped Gate TFET With Improved Ambipolar Conduction -- 5.1 Introduction -- 5.2 Device Structure -- 5.3 Results and Discussion -- 5.4 Conclusion -- References -- Chapter 6 Analysis of RF with DC and Linearity Parameter and Study of Noise Characteristics of Gate-All-Around Junctionless FET (GAA-JLFET) and Its Applications -- 6.1 Introduction -- 6.2 Structure of GAA-JLFET -- 6.3 Results and Discussion -- 6.3.1 DC Analysis -- 6.3.2 RF Analysis -- 6.3.3 Linearity Analysis -- 6.3.4 Noise Analysis -- 6.3.4.1 Thermal Noise -- 6.3.4.2 Flicker Noise -- 6.3.4.3 Gate-Induced Thermal Noise -- 6.4 Applications -- 6.5 Conclusion -- References.

Chapter 7 E-Mode-Operated Advanced III-V Heterostructure Quantum Well Devices for Analog/RF and High-Power Switching Applications -- 7.1 Silicon Era and Scaling Limit -- 7.2 III-V GaN-Based Compound Semiconductors -- 7.3 Band-Gap Engineering -- 7.4 Quantum Well -- 7.5 Polarization in GaN Devices and their Specific Properties -- 7.6 Strain and Lattice Mismatch in III-N Semiconductors -- 7.7 High Electron Mobility Transistors (HEMTs) -- 7.8 Two-Dimensional Electron Gas (2DEG) -- 7.9 AlGaN/GaN Heterostructure HEMT -- 7.9.1 Scope of the III-V Heterostructure Quantum Well Device -- 7.9.2 Problem Statement -- 7.9.3 Motivation for the Present III-V Heterostructure Quantum Well Device -- 7.10 Enhancement Mode GaN DH-HEMTs Device With Boron-Doped Gate Cap Layer -- 7.10.1 Device Architecture -- 7.11 High-K Gate Dielectric III-Nitride GaN MIS-HEMT Devices -- 7.11.1 Device Architecture -- 7.11.2 Boost Converter Circuit Application -- 7.12 Conclusion -- References -- Chapter 8 Design of FinFET as Biosensor -- 8.1 Introduction -- 8.2 Existing FET Based Biosensors -- 8.2.1 TGRC-MOSFET as a Biosensor -- 8.2.2 An N-Type Nanogap Embedded Polarity Biased Based DM- EDTFET Biosensor -- 8.2.3 Cavity on Source Charge Plasma TFET-Based Biosensor -- 8.2.4 Dielectric Modulated Double Gate Junctionless MOSFET Biosensor -- 8.2.5 A Double Gate Dielectric Modulated Junctionless Tunnel Field-



Effect Transistor as a Biosensor -- 8.3 Performance Parameters of Biosensors -- 8.4 FinFET Designed as Biosensor Using Visual TCAD -- 8.5 Biosensors in Disease Detection -- 8.6 Conclusion -- 8.7 Acknowledgement -- References -- Chapter 9 Biodegradable and Flexible Electronics: Types and Applications -- 9.1 Introduction -- 9.2 Biodegradable and Flexible Electronics -- 9.3 Types of Materials Used for Biodegradable and Flexible Electronics -- 9.3.1 Materials for Biodegradable Electronics.

9.3.2 Materials for Flexible Electronics -- 9.4 Applications of Biodegradable and Flexible Electronic Devices -- 9.4.1 Sensing and Diagnosis -- 9.4.2 Energy Storage -- 9.4.3 Smart Textiles -- 9.4.3.1 Chameleonic Textiles -- 9.4.3.2 Intelligent Textile Sutures -- 9.4.3.3 Textile-Based Flexible and Printable Material -- 9.4.4 Wearable Electronics -- 9.5 Conclusion -- References -- Chapter 10 Novel Parameters Extraction Method of High-Speed PIN Diode for Power Integrated Circuit -- 10.1 Introduction -- 10.2 Review of the Technology and Physics of Power PIN Diodes -- 10.2.1 Technological Aspect -- 10.2.2 Physical Aspect -- 10.3 State of the Art of PIN Diode Parameters Extraction -- 10.4 Proposed Method -- 10.4.1 Principle -- 10.4.2 Doping Profile Parameters Identification -- 10.4.2.1 Experimental Method -- 10.4.2.2 Model Description -- 10.4.2.3 Parameters Extraction Procedure -- 10.4.3 Ambipolar Lifetime Estimation -- 10.4.3.1 Experimental Method -- 10.4.3.2 Numerical Analysis of OCVD Method -- 10.4.3.3 Parameters Extraction Procedure -- 10.5 Validation -- 10.6 Conclusion -- References -- Chapter 11 Edge AI - A Promising Technology -- 11.1 Introduction -- 11.2 Deep Neural Networks -- 11.2.1 Multi-Layer Perceptrons (MLP) -- 11.2.2 Convolutional Neural Networks (CNNs) -- 11.2.3 Recurrent Neural Networks (RNNs) -- 11.3 Model Compression Techniques for Deep Learning -- 11.3.1 Pruning -- 11.3.2 Quantization -- 11.3.3 Low Rank Factorization -- 11.3.4 Knowledge Distillation -- 11.4 Computing Infrastructures -- 11.4.1 GPU Accelerator -- 11.4.2 FPGA Accelerator -- 11.5 Conclusion -- References -- Chapter 12 Tunable Frequency Oscillator -- 12.1 Introduction -- 12.2 Experimental Methods and Materials -- 12.2.1 Varactor Diode -- 12.2.2 Active Inductor -- 12.3 Results and Discussion -- 12.4 Conclusion -- References.

Chapter 13 Introduction to Nanomagnetic Materials for Electronic Devices: Fundamental, Synthesis, Classification and Applications -- 13.1 Introduction - An Explanation of the Process and Approach -- 13.2 Nanomaterials -- 13.2.1 Surface to Volume Ratio -- 13.2.2 Quantum Confinement Effect -- 13.3 Synthesis and Characterization of Nano Materials -- 13.4 Characterization Technique for Structural Analysis -- 13.5 Magnetic Materials -- 13.6 Classification of Magnetic Materials -- 13.7 Magnetic Properties -- 13.8 Ferrites -- 13.8.1 Classification and Types of Ferrites -- 13.8.2 Spinel Ferrite -- 13.8.3 Garnet -- 13.8.4 Ortho Ferrite Structure -- 13.8.5 Magnetoplumbite Structure -- 13.8.6 Hexagonal Ferrites -- 13.8.7 Classification of Hexaferrite -- 13.9 Applications of Magnetic Materials -- 13.10 Conclusion -- References -- About the Editors -- Index -- EULA.

Sommario/riassunto

This book, 'Nanodevices for Integrated Circuit Design', provides a comprehensive exploration of advanced nanotechnologies and their applications in integrated circuit design. Edited by experts Suman Lata Tripathi, Abhishek Kumar, K. Srinivasa Rao, and Prasantha R. Mudimela, it delves into topics such as nanowire field-effect transistors, silicon nanowire devices, and molybdenum disulfide FETs. The book also covers the kink effect in transistors, next-generation quantum well devices, and the role of FinFETs as biosensors. It aims to address the challenges in fabricating and utilizing nanodevices, with discussions on



RF analysis, biodegradable electronics, and edge AI technology. Intended for researchers, professionals, and students in the fields of electronics and nanotechnology, this work offers insights into the latest advancements and methodologies in the design and application of nanodevices.