| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9911019529803321 |
|
|
Autore |
Cheng Y. Frank |
|
|
Titolo |
Defect Assessment for Integrity Management of Pipelines |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-119-81542-8 |
1-119-81540-1 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (355 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Pipelines - Maintenance and repair |
Pipelines - Reliability |
Pipelines - Safety measures |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- List of Abbreviations and Symbols -- Chapter 1 Pipeline Integrity Management -- 1.1 Introduction -- 1.2 Overview of Threats to Pipeline Integrity -- 1.2.1 Corrosion -- 1.2.2 Environmentally Assisted Cracking -- 1.2.2.1 Stress Corrosion Cracking -- 1.2.2.2 Corrosion Fatigue -- 1.2.2.3 Hydrogen-Induced Cracking -- 1.2.3 Manufacturing Defects -- 1.2.3.1 Manufacturing Defects on Pipe Body -- 1.2.3.2 Manufacturing Defects at Welds -- 1.2.4 Construction Damage -- 1.2.4.1 Encroachment Damage -- 1.2.4.2 Dents -- 1.2.5 Geotechnical Hazards -- 1.2.5.1 Landslides -- 1.2.5.2 Land Subsidence -- 1.2.5.3 Frost Heave and Thaw Settlement -- 1.2.5.4 Earthquakes -- 1.2.6 Threat Interaction -- 1.3 Elements of Pipeline Integrity Management -- 1.3.1 Identification -- 1.3.1.1 ILI Tools and the Applications -- 1.3.2 Assessment -- 1.3.2.1 Determination of FFS of Pipelines -- 1.3.3 Mitigation -- 1.3.3.1 Composite Sleeve Repair -- 1.3.3.2 Pipe Wall Grinding and Recoating -- 1.3.3.3 Metallic Sleeve Repair -- 1.3.4 Monitoring -- 1.3.4.1 Internal and External Corrosion Monitoring -- 1.3.4.2 Crack Monitoring -- 1.3.4.3 Welding Defect Monitoring -- 1.3.4.4 Mechanical Damage Monitoring -- 1.3.4.5 Incorrect Operation Monitoring -- 1.3.5 Prevention -- 1.4 Plan-Do-Check-Act Integrity |
|
|
|
|
|
|
|
|
|
Management Cycle -- 1.4.1 Plan -- 1.4.2 Do -- 1.4.3 Check -- 1.4.4 Act -- References -- Chapter 2 Levels I and II Assessment of Corrosion Anomalies on Pipelines -- 2.1 Defect Assessment for Pipeline FFS Determination -- 2.2 Evolution of Defect Assessment Techniques -- 2.2.1 Historical Background of Defect Assessment on Pipelines -- 2.2.2 Level-by-level Defect Assessment Approach -- 2.3 Level I Defect Assessment on Pipelines -- 2.3.1 Principle and Codes. |
2.3.2 Applications of Level I Defect Assessment for Pipeline FFS Determination and Failure Pressure Prediction -- 2.3.3 Commentary Remarks for Level I Defect Assessment Methods -- 2.4 Level II Defect Assessment on Pipelines -- 2.4.1 Principle and Codes -- 2.4.1.1 The Level IIa Method -- 2.4.1.2 The Level IIb Method -- 2.4.2 Commentary Remarks for Level II Defect Assessment Methods -- References -- Chapter 3 Level III Assessment of Corrosion Anomalies on Pipelines -- 3.1 Introduction -- 3.2 Principle and Methods -- 3.2.1 Stress Conditions of Pipelines -- 3.2.2 Stress-Strain Relationships of Pipeline Steels -- 3.2.3 Pipeline Failure Criteria -- 3.2.3.1 Stress-based Criteria -- 3.2.3.2 Strain-based Criteria -- 3.3 Applications for FFS Determination and Failure Pressure Prediction of Pipelines -- 3.3.1 A Single Corrosion Defect on Pipelines -- 3.3.1.1 Failure Pressure Prediction and Evaluation of the Accuracy of Existing Industry Models -- 3.3.1.2 Local Stress and Strain Distributions at the Corrosion Defect -- 3.3.1.3 Failure Pressure of Pipelines Containing a Corrosion Defect Under a Combined Internal Pressure and Axial Strain -- 3.3.2 Multiple Corrosion Defects on Pipelines -- 3.3.2.1 The Model -- 3.3.2.2 Interaction of Longitudinally or Circumferentially Aligned Corrosion Defects on Pipelines -- 3.3.2.3 Overlapped Corrosion Defects on Pipelines -- 3.3.2.4 Quantification of the Interaction of Multiple Corrosion Defects -- 3.3.3 Defect Assessment Under Mechanical Vibration Induced by ILI Operation -- 3.3.3.1 The Model -- 3.3.3.2 Distributions of von Mises Stress at Corrosion Defect Under Cyclic Loading: Effect of R-ratio -- 3.3.3.3 Distributions of von Mises Stress and Strain at Corrosion Defect Under Cyclic Loading: Effect of Cyclic Frequency -- 3.3.3.4 ILI Operation and Its Potential Effect on Integrity of Pipelines Containing Corrosion Defect. |
3.3.4 Corrosion Defect at Pipeline Elbow and the Burst Pressure Determination -- 3.3.4.1 Burst Pressure Prediction of Pipeline Elbow Containing Corrosion Defect -- 3.3.4.2 Development of the FE Model -- 3.3.4.3 Effects of Corrosion Defect Dimension on Burst Capacity of Pipe Elbow -- 3.3.4.4 A New Model for Prediction of Burst Pressure of Corroded Pipe Elbows -- 3.3.5 Interaction Between Internal and External Corrosion Defects on Pipelines -- 3.3.5.1 Model Development -- 3.3.5.2 Stress Distributions and Failure Pressure of a Steel Pipe Containing Corrosion Defects with Various Distribution Types -- 3.3.5.3 Assessment of the Interaction Between Internal and External Corrosion Defects and the Implication on Pipeline Integrity Management -- 3.4 Commentary Remarks -- References -- Chapter 4 Mechano-electrochemical Interaction for Level III Assessment of Corrosion Anomalies on Pipelines - A Single Corrosion Defect -- 4.1 Fundamentals of Mechano-electrochemical Interaction for Pipeline Corrosion -- 4.1.1 The Mechanical-Chemical Interaction of Corrosion of Stressed Metals -- 4.1.2 The M-E Interaction for Pipeline Corrosion -- 4.1.2.1 Corrosion Thermodynamics and Kinetics Under an Elastic Stress -- 4.1.2.2 Corrosion Thermodynamics and Kinetics Under a Plastic Stress -- 4.2 Multi-Physics Field Coupling at a Corrosion Defect on Pipelines -- 4.2.1 Electrochemical Anodic and Cathodic Reactions and Relevant Parameters -- 4.2.2 Electrical Field in the Solution Phase -- 4.2.3 Mechanical Stress Field on Pipelines -- 4.3 The M-E |
|
|
|
|
|
|
|
Interaction at a Single Corrosion Defect on Pipelines -- 4.3.1 A Single Corrosion Defect with a Regular Geometrical Shape -- 4.3.1.1 Corrosion Defect with Various Inclinations on Pipelines -- 4.3.1.2 Corrosion Defect at an Elbow of Pipelines -- 4.3.2 A Single Corrosion Defect with Complex Shape -- 4.3.2.1 At the Inclination Angle of 90. |
4.3.2.2 At the Inclination Angle of 0 -- 4.3.2.3 Effect of the Corrosion Defect Geometry on Assessment Accuracy -- 4.3.3 Corrosion Defect Growth on Pipelines Under the M-E Interaction -- 4.3.3.1 The Model and Modeling Process -- 4.3.3.2 Corrosion Defect Growth and Failure Pressure Prediction Under Various Internal Pressures -- 4.3.3.3 Implications on Long-Term Performance of Corroded Pipelines -- 4.3.4 The M-E Interaction at a Corrosion Defect on Pipelines in Suspension and the Failure Pressure Prediction -- 4.3.4.1 The Model and Modeling Process -- 4.3.4.2 Modeling of von Mises Stress and Anodic Current Density at a Corrosion Defect on a Suspended Pipe -- 4.3.4.3 Failure Prediction of Suspended Pipelines Containing a Corrosion Defect -- References -- Chapter 5 Mechano-electrochemical Interaction for Level III Assessment of Corrosion Anomalies on Pipelines - Multiple Corrosion Defects -- 5.1 Introduction -- 5.2 Assessment of Multiple Corrosion Defects on Pipelines and Development of Interaction Rules -- 5.2.1 Longitudinally Aligned Corrosion Defects Under the M-E Interaction -- 5.2.1.1 The Model -- 5.2.1.2 Distributions of Stress and Anodic Current Density of the Pipe Containing Two Corrosion Defects Under Axial Tensile Stresses -- 5.2.1.3 Distributions of Stress and Anodic Current Density of a Pressurized Pipe Containing Two Corrosion Defects -- 5.2.1.4 A Critical Longitudinal Spacing Criterion -- 5.2.2 Circumferentially Aligned Corrosion Defects Under the M-E Interaction -- 5.2.2.1 The Model -- 5.2.2.2 Distributions of Stress and Anodic Current Density of the Pipe Under Axial Tensile Stresses -- 5.2.2.3 Distributions of Stress and Anodic Current Density of a Pressurized Pipe Containing Two Corrosion Defects -- 5.2.2.4 A Critical Circumferential Spacing Criterion -- 5.2.3 Overlapped Corrosion Defects Under the M-E Interaction -- 5.2.3.1 The Model. |
5.2.3.2 Modeling of Stress and Anodic Current Density at Overlapped Corrosion Defects Under Various Internal Pressures -- 5.2.3.3 Modeling of Stress and Anodic Current Density Distributions at Overlapped Corrosion Defects with Various Defect Depths -- 5.2.3.4 Implications on Integrity of Pipelines Containing Overlapped Corrosion Defects -- 5.3 Interactions of Multiple Corrosion Defects with Irregular Orientations -- 5.3.1 The Model Development -- 5.3.2 Effects of Relative Positions and Spacing of the Corrosion Defects on M-E Interaction -- 5.3.2.1 Relative Longitudinal Positions and Spacing -- 5.3.2.2 Relative Circumferential Positions and Spacing -- 5.3.3 Implication on Pipeline Integrity in the Presence of Multiple, Irregularly Oriented Corrosion Defects -- References -- Chapter 6 Assessment of Dents on Pipelines -- 6.1 Introduction -- 6.2 Standards and Methods for Dent Assessment -- 6.2.1 Existing Dent Assessment Standards -- 6.2.2 Principles of the Dent Assessment Standards -- 6.2.3 Limitations of the Existing Standards and Improved Strain Determination for Dent Assessment -- 6.3 Assessment of Dent-Defect Combinations on Pipelines -- 6.3.1 Dent with a Gouge -- 6.3.2 Corrosion in Dent -- 6.3.3 Dent with Cracks -- 6.4 Fatigue Failure of Pipelines Containing Dents -- 6.5 Failure Criteria of Pipelines Containing Dents -- 6.5.1 Oyane's Plastic Failure Criterion and Ductile Fracture Damage Index (DFDI) Criterion -- 6.5.2 Strain Limit Damage (SLD) Criterion -- 6.5.3 Net Section Failure Criterion and Plastic Collapse Strain Criterion -- 6.5.4 Remaining Fatigue Life Criterion -- 6.6 Finite Element Modeling for Dent Assessment on Pipelines -- 6.6.1 Simulation of the Denting |
|
|
|
|
|
|
|
|
|
Process -- 6.6.1.1 Materials Model -- 6.6.1.2 Model Development -- 6.6.1.3 Modeling Verification -- 6.6.2 Modeling for Dent Assessment of Pipelines. |
6.6.3 Modeling Assessment for Dent-Corrosion Combinations on Pipelines. |
|
|
|
|
|
|
Sommario/riassunto |
|
"This book focuses on defect assessment on pipelines for an improved integrity management. The fundamental and practical applications of defect assessment methods provide a reliable means for the determination of fitness-for-service of pipelines containing various types of anomalies and an accurate prediction of pipeline failure. Evolution of the techniques and industry codes for defect assessment on pipelines is introduced in a technical development sequence from introductory to advanced techniques. In addition to corrosion defects, dents and other geometrical anomalies present on pipelines are assessed and analyzed by individual principles and methods specific to their own features. These topics provide pipeline engineers and integrity specialists, as well as pipeline researchers and senior graduate students, the latest knowledge, techniques, and research accomplishments on pipeline defect assessment"-- |
|
|
|
|
|
|
|
| |