1.

Record Nr.

UNISOBE600200051468

Autore

Mason, Richard

Titolo

The God of Spinoza : a philosophical study / Richard Mason

Pubbl/distr/stampa

Cambridge ; New York, : Cambridge University Press, 1997

ISBN

0521581621

Descrizione fisica

XIV,273 p. ; 23 cm

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9911019516903321

Autore

Appel Fritz

Titolo

Gamma Titanium Aluminide Alloys : Science and Technology

Pubbl/distr/stampa

Hoboken, : Wiley, 2011

ISBN

3-527-63622-6

3-527-63620-X

Descrizione fisica

1 online resource (1537 p.)

Altri autori (Persone)

PaulJonathan David Heaton

OehringMichael

Disciplina

620.189322

Soggetti

Titanium -- Industrial applications

Titanium alloys

Titanium

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Cover; Related Titles; Title page; Copyright page; Preface; Figures - Tables Acknowledgement List; 1 Introduction; 2 Constitution; 2.1 The Binary Ti-Al Phase Diagram; 2.2 Ternary and Multicomponent Alloy Systems; 3 Thermophysical Constants; 3.1 Elastic and Thermal Properties; 3.2 Point Defects; 3.3 Diffusion; 4 Phase Transformations



and Microstructures; 4.1 Microstructure Formation on Solidification; 4.2 Solid-State Transformations; 5 Deformation Behavior of Single-Phase Alloys; 5.1 Single-Phase γ(TiAl) Alloys; 5.2 Deformation Behavior of Single-Phase α2(Ti3Al) Alloys; 5.3 β/B2 Phase Alloys

6 Deformation Behavior of Two-Phase α2(Ti3Al) + γ(TiAl) Alloys6.1 Lamellar Microstructures; 6.2 Deformation Mechanisms, Contrasting Single-Phase and Two-Phase Alloys; 6.3 Generation of Dislocations and Mechanical Twins; 6.4 Glide Resistance and Dislocation Mobility; 6.5 Thermal and Athermal Stresses; 7 Strengthening Mechanisms; 7.1 Grain Refinement; 7.2 Work Hardening; 7.3 Solution Hardening; 7.4 Precipitation Hardening; 7.5 Optimized Nb-Bearing Alloys; 8 Deformation Behavior of Alloys with a Modulated Microstructure; 8.1 Modulated Microstructures; 8.2 Misfitting Interfaces

10.4 Fracture Toughness, Strength, and Ductility10.5 Fracture Behavior of Modulated Alloys; 10.6 Requirements for Ductility and Toughness; 10.7 Assessment of Property Variability; 11 Fatigue; 11.1 Definitions; 11.2 The Stress-Life (S-N) Behavior; 11.3 HCF; 11.4 Effects of Temperature and Environment on the Cyclic Crack-Growth Resistance; 11.5 LCF; 11.6 Thermomechanical Fatigue and Creep Relaxation; 12 Oxidation Behavior and Related Issues; 12.1 Kinetics and Thermodynamics; 12.2 General Aspects Concerning Oxidation; 12.3 Summary; 13 Alloy Design; 13.1 Effect of Aluminum Content

13.2 Important Alloying Elements - General Remarks13.3 Specific Alloy Systems; 13.4 Summary; 14 Ingot Production and Component Casting; 14.1 Ingot Production; 14.2 Casting; 14.3 Summary; 15 Powder Metallurgy; 15.1 Prealloyed Powder Technology; 15.2 Elemental-Powder Technology; 15.3 Mechanical Alloying; 16 Wrought Processing; 16.1 Flow Behavior under Hot-Working Conditions; 16.2 Conversion of Microstructure; 16.3 Workability and Primary Processing; 16.4 Texture Evolution; 16.5 Secondary Processing; 17 Joining; 17.1 Diffusion Bonding; 17.2 Brazing and Other Joining Technologies

18 Surface Hardening

Sommario/riassunto

This first book entirely dedicated to titanium aluminide alloys emphasizes the relation between basic research topics and processing technologies for real applications. As such, it covers complex microstructures down to the nanometer scale, titanium aluminide structure/property relationships and the potential in such key industries as aerospace, automotive and power conversion. The result is more detailed coverage of the fundamentals than is otherwise found in typical textbooks, making this relevant reading not only for the Ti-Al research community, but also for a wide range of physical metall