1.

Record Nr.

UNINA9910355960303321

Autore

Lauro, Natale Carlo

Titolo

Data science and social research : epistemology, methods, technology and applications / N.Carlo Lauro, Enrica Amaturo, Maria Gabriella Grassia, Biagio Aragona, Marina Marino

Pubbl/distr/stampa

Cham, : Springer, 2017

ISBN

9783319554761

Descrizione fisica

300 p. ; 23 cm

Altri autori (Persone)

Amaturo, Enrica

Disciplina

300.72

Locazione

BFS

Collocazione

300.72 LAU 1

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9911019510703321

Autore

Munir Arslan

Titolo

Accelerators for Convolutional Neural Networks

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2023

©2024

ISBN

9781394171897

9781394171910

Edizione

[1st ed.]

Descrizione fisica

1 online resource (307 pages)

Altri autori (Persone)

KongJoonho

QureshiMahmood Azhar

Disciplina

006.32

Soggetti

Neural networks (Computer science)

Computer architecture

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Part I Overview --   Chapter 1 Introduction --     1.1 History and Applications --     1.2 Pitfalls of High‐Accuracy DNNs/CNNs --       1.2.1 Compute and Energy Bottleneck --       1.2.2 Sparsity Considerations --     1.3 Chapter Summary --   Chapter 2 Overview of Convolutional Neural Networks --     2.1 Deep Neural Network Architecture --     2.2 Convolutional Neural Network Architecture --       2.2.1 Data Preparation --       2.2.2 Building Blocks of CNNs --         2.2.2.1 Convolutional Layers --         2.2.2.2 Pooling Layers --         2.2.2.3 Fully Connected Layers --       2.2.3 Parameters of CNNs --       2.2.4 Hyperparameters of CNNs --         2.2.4.1 Hyperparameters Related to Network Structure --         2.2.4.2 Hyperparameters Related to Training --         2.2.4.3 Hyperparameter Tuning --     2.3 Popular CNN Models --       2.3.1 AlexNet --       2.3.2 VGGNet --       2.3.3 GoogleNet

Sommario/riassunto

This book provides an in-depth exploration of accelerators for convolutional neural networks (CNNs), a pivotal component in the field of artificial intelligence and computer vision. It covers the architecture of CNNs, compressive coding techniques, and the design of both dense and sparse CNN accelerators. The text discusses hardware and software



co-design and scheduling strategies to optimize CNN performance. Aimed at students, researchers, and professionals in computer architecture and hardware design, the book serves as a comprehensive reference on the development and implementation of CNN accelerators.