1.

Record Nr.

UNINA9911019336703321

Autore

Ravishankar Gokare A

Titolo

Algae Mediated Bioremediation : Industrial Prospectives, 2 Volumes

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

9783527843350

3527843353

9783527843343

3527843345

9783527843367

3527843361

Edizione

[1st ed.]

Descrizione fisica

1 online resource (810 pages)

Altri autori (Persone)

AmbatiRanga Rao

KimSe-Kwon

Disciplina

628.5

Soggetti

Algae

Industrial applications

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Foreword -- Preface -- Acknowledgment -- Part I Phycoremediation Strategies -- Chapter 1 Microalgal Process Technologies for Removal of High Load of Pollutants from Wastewater -- 1.1 Introduction -- 1.2 Microalgal Cultivation Techniques -- 1.2.1 Open System -- 1.2.2 Closed System -- 1.3 Microalgal Wastewater Remediation -- 1.3.1 Heavy Metals Removal -- 1.3.2 Phosphates and Nitrates Removal -- 1.3.3 Organic Compounds Removal -- 1.4 Microalgal‐Based Hybrid Systems For Wastewater Treatment -- 1.4.1 Nanomaterials -- 1.4.2 Activated Carbon -- 1.4.3 Polymers -- 1.5 Microalgae Consortium -- 1.6 Future Perspectives -- 1.7 Conclusion -- References -- Chapter 2 Synergistic Bacteria-Algae Efficiency in Remediation of Heavy Metals in Wastewater -- 2.1 Introduction -- 2.2 Heavy Metals -- 2.2.1 Sources of Heavy Metals in the Wastewater -- 2.2.2 Effects Caused Due to Heavy Metals in Water -- 2.3 Role of Bacteria and Algae in the Remediation of



Heavy Metals -- 2.3.1 Role of Algae -- 2.3.2 Role of Bacteria -- 2.3.3 Synergism Between Algae-Bacteria Consortium -- 2.3.4 Factors Affecting the Microalgal System -- 2.4 Diverse Mechanisms of Heavy Metal Remediation -- 2.4.1 Biosorption -- 2.4.2 Bioaccumulation -- 2.5 Applications -- 2.6 Future Prospects -- 2.7 Conclusion -- Conflict of Interests -- Acknowledgment -- References -- Chapter 3 Immobilization of Microalgae for Bioremediation of Wastewater -- 3.1 Introduction -- 3.2 Microalgae -- 3.3 Immobilization Techniques for Microalgal Cells -- 3.4 Applications of Immobilized Microalgae in Pollutants Removal -- 3.4.1 Removal of Nutrients and Pesticides from Industrial Wastewater -- 3.4.2 Heavy Metals Removal -- 3.4.3 Dyes and Hydrocarbon Removal from Textile Wastewater -- 3.5 Large‐Scale Production of Microalgal System -- 3.6 Future Perspectives.

3.7 Conclusion -- Abbreviations -- References -- Chapter 4 Immobilized Microalgae‐Based Processes: Is It a Viable Pathway for Wastewater Treatment? -- 4.1 Introduction -- 4.2 Why Use Immobilized Microalgae for Wastewater Treatment? -- 4.2.1 Pros and Cons of Immobilized Microalgae -- 4.3 Immobilization Techniques -- 4.4 Microalgae Immobilization Systems for Wastewater Treatment -- 4.5 Downstream Applications of Microalgae Immobilized Systems -- 4.6 Conclusions and Future Outlook -- Acknowledgment -- References -- Chapter 5 Bioreactors and Operation Modes for Microalgae‐Based Wastewater Treatment -- 5.1 Introduction -- 5.2 Bioreactor Types and Operating Conditions -- 5.3 Operation Modes in Microalgae Cultivation -- 5.4 Conclusions and Future Prospects -- References -- Chapter 6 Removal of Heavy Metals from the Aquatic and Terrestrial Ecosystems by Microalgae -- 6.1 Introduction -- 6.2 Heavy Metals and their Breakneck Consequences in the Aquatic Ecosystem -- 6.3 Microalgae - The Promising Resource for the Remediation of Heavy Metals -- 6.4 Competitiveness of Microalgae over other Techniques in the Exclusion of HMs -- 6.5 Remediation Mechanisms of Numerous HMs via Microalgae -- 6.5.1 Biosorption -- 6.5.1.1 Physical Adsorption -- 6.5.1.2 Ion Exchange -- 6.5.1.3 Complexation -- 6.5.1.4 Precipitation -- 6.5.2 Bioaccumulation -- 6.5.3 Biotransformation -- 6.6 Recent Advanced Strategies for Microalgae‐Based Heavy Metals Removal -- 6.6.1 Immobilization of Microalgae -- 6.6.2 Development of Consortia of Microalgae -- 6.6.3 Application of Genetic and Metabolic Engineering Tools -- 6.7 Conclusion and Future Perspectives -- Acknowledgments -- Abbreviations -- References -- Chapter 7 Seaweeds as Accumulators of Heavy Metals: Current Status on Heavy Metal Sequestration -- 7.1 Introduction -- 7.2 Seaweeds and Marine Ecosystem.

7.3 Heavy Metals and their Effects on the Marine Ecosystem and Environments -- 7.3.1 Seaweeds as Bioindicators/Biomonitors of Heavy Metal Pollution -- 7.4 Heavy Metal Accumulation and Food Chain -- 7.5 Removal of Heavy Metals -- 7.6 Role of Seaweeds in Bioremediation/ Phycoremediation -- 7.6.1 Brown Seaweeds -- 7.6.2 Red Seaweeds -- 7.6.3 Green Seaweeds -- 7.7 Futuristic Plans for Sequestration of Heavy Metals by Cultivation of Seaweeds -- 7.8 Conclusion -- Abbreviations -- References -- Chapter 8 Bioremediation of Wastewater Employing Microalgae -- 8.1 Introduction -- 8.2 Microalgae and Their Wonders -- 8.3 Wastewater Treatment Using Microalgae -- 8.3.1 Bioremediation of Industrial Effluents -- 8.3.2 Bioremediation of Heavy Metal -- 8.3.3 Bioremediation of Pathogenic Organisms -- 8.3.4 Bioremediation of Dyes Removal -- 8.4 Photobioreactors (PBRs) Used in the Bioremediation of Wastewater -- 8.4.1 Suspended Microalgae Systems for Wastewater Treatment -- 8.4.2 Immobilized Microalgae Systems for Wastewater Treatment -- 8.4.2.1 Microalgae Turf Scrubber -- 8.4.2.2



Fixed Bed Systems -- 8.4.2.3 Fluidized Bed Systems -- 8.5 End Use of Cultivated Microalgae in Wastewater -- 8.6 Challenges -- 8.7 Conclusion -- Acknowledgments -- References -- Chapter 9 The Combined Use of Alginate and Chitosan in the Removal of Dye and Heavy Metal Ions -- 9.1 Introduction -- 9.2 The Combined Use of Alginate and Chitosan in the Treatment of Wastewater Containing Heavy Metal Ions -- 9.2.1 Experimental Procedure and Initial Observation -- 9.2.2 Effect of the Ratio Between Chitosan and Sodium Alginate on the Treatment Result -- 9.2.3 Effect of Treatment Time -- 9.2.4 Effect of Temperature -- 9.2.5 Treatment Efficiency for Different Types of Heavy Metal Ions -- 9.3 The Combined Use of Alginate and Chitosan in the Treatment of Wastewater‐Containing Dye.

9.3.1 The Principles of Using Chitosan and Alginate in Removing Waste Dye -- 9.3.2 Experimental Procedure -- 9.3.3 Effect of Chitosan and Alginate Concentration on Dye Removal -- 9.3.4 Effect of the Ratio Between Chitosan and Alginate on Dye Removal -- 9.3.5 Effect of Temperature and Time on Dye Removal -- 9.4 Applications of Alginate and Chitosan as Immobilizing Agents in Wastewater Treatment Technologies -- 9.5 Conclusions -- References -- Part II Anaerobic Digestion for Removal of Pollutants and Sewage Treatment -- Chapter 10 Treatment of Swine Wastewater Using Microalgae -- 10.1 Introduction -- 10.2 MbWT as Primary Treatment for SW -- 10.3 MbWT as a Complementary Treatment for SW -- 10.3.1 Anaerobic Treatment -- 10.3.2 Flocculation-Coagulation -- 10.3.3 Ultraviolet Radiation Treatment -- 10.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 11 Potential of Algal Culture to Treat Anaerobic Digestate of Piggery Waste for Bioremediation and Biomass Production -- 11.1 Introduction -- 11.2 From Raw Wastewater to Anaerobic Digestate -- 11.2.1 Nutrient Load and Properties of Raw Piggery Wastewater -- 11.2.2 Algal Growth Studies Using Raw Piggery Effluent -- 11.2.3 Features and Advantages of Piggery Wastewater Anaerobic Digestate -- 11.2.3.1 The Biological Breakdown of Nitrogen Compounds and the Formation of Ammonia -- 11.2.3.2 Turbidity (Dark Color) of Wastewater -- 11.2.3.3 High pH -- 11.2.4 Previous Studies Using Algae to Treat Anaerobic Digestate -- 11.3 Potential use of Produced Biomass -- 11.3.1 Pig Feed -- 11.3.2 Biogas Production Enrichment -- 11.3.3 Plant Fertiliser or Other Exportable -- 11.3.4 Water Purification -- 11.3.5 Carbon Capture -- 11.4 Limits to Algal Growth in ADPE -- 11.4.1 The Concern of High Ammonia Concentration -- 11.4.2 Phosphate Availability -- 11.4.3 Micronutrient Limitations and Interactions.

11.4.4 Addition of CO2 and pH Control -- 11.4.5 Cell Density -- 11.4.6 Mixing and Pond Depth -- 11.4.7 Temperature -- 11.4.8 Strain Selection -- 11.4.9 Digestate Pretreatments -- 11.4.10 Advanced and Future Optimization Approaches -- 11.5 Process Design -- 11.5.1 Life Cycle Assessment (LCA) -- 11.5.2 Potential Process Design -- 11.6 Economics of Culturing Algae Using Piggery Digestate -- 11.6.1 Scope -- 11.6.2 Potential Products -- 11.6.3 Model Development -- 11.7 Future Perspectives -- Acronyms -- Acknowledgments -- References -- Chapter 12 Algae and Biogas Plants: Digestate Remediation and Nutrient Recycling with Algal Systems -- 12.1 Introduction -- 12.2 Microalgae Integration in Biogas Plants -- 12.2.1 Liquid Fraction of Anaerobic Digestate as a Growth Medium -- 12.2.2 Options for Integrating Microalgae Cultivation into Biogas Plants -- 12.3 Microalgal Cultivation on Anaerobic Digestate - Challenges and Solutions -- 12.3.1 Digestate Composition and Characteristics -- 12.3.2 Selection of Algae Species -- 12.3.3 Mathematical Modeling -- 12.4 Microalgae‐based Biogas Upgrading -- 12.4.1 Fundamentals -- 12.4.2 Parameters



Affecting Photosynthetic Biogas Upgrading -- 12.5 Valorization -- 12.5.1 Biofertilizers, Biostimulants, and Animal Feed -- 12.5.2 Biorefineries (Biofuels, Bioplastics, and Cosmetics) -- 12.6 Conclusions and Future Perspective -- Acknowledgements -- Abbreviations -- References -- Part III Treatment of Agricultural Wastes -- Chapter 13 Phycoremediation of Aquaculture Wastewater by Algae -- 13.1 Introduction -- 13.2 Global Production and Significance of the Aquaculture Industry -- 13.3 Aquaculture Wastewater is a Critical Hazard -- 13.4 Phycoremediation by Algae: A Green Technology for the Treatment of Aquaculture Wastewater -- 13.5 Algal‐Based Phycoremediation Process for Aquaculture Wastewater Treatment.

13.6 Major Challenges and Constraints of Algae‐Based Phycoremediation of Aquaculture.

Sommario/riassunto

This book, 'Algae Mediated Industrial Prospectives', edited by Gokare A. Ravishankar, Ambati Ranga Rao, and Se-Kwon Kim, explores the utilization of algae in industrial applications, particularly focusing on wastewater treatment and pollution remediation. The volume discusses various algae-based technologies and methodologies for removing pollutants, heavy metals, and dyes from different types of wastewater, including aquaculture, food processing, and industrial effluents. It also examines the role of algae in carbon dioxide sequestration and the potential for valorizing algal biomass into valuable products. Aimed at researchers, environmental scientists, and industry professionals, the book provides insights into sustainable waste management practices and the development of environmentally friendly technologies.