|
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations |
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing |
1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate |
1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank |
1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis |
1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |