| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991000885579707536 |
|
|
Autore |
Stroock, Daniel W. |
|
|
Titolo |
An introduction to Markov processes / Daniel W. Stroock |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Graduate texts in mathematics, 0072-5285 ; 230 |
|
|
|
|
|
|
Classificazione |
|
AMS 60J10 |
AMS 60J27 |
AMS 60-01 |
LC QA274.7.S765 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 168) and index |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019267903321 |
|
|
Autore |
Vandamme Matthieu |
|
|
Titolo |
Geomechanics of Coal Seams |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2025 |
|
©2025 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-394-37262-0 |
1-394-37260-4 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (232 pages) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- Introduction: Why a Book on the "Geomechanics of Coal Seams"? -- Chapter 1. Coal, Its Genesis, Its Characteristics -- 1.1. Definition -- 1.2. Deposition conditions -- 1.3. The major periods of coal deposition -- 1.4. Coalification process -- 1.5. Coal classification -- 1.6. Coal gas -- 1.6.1. Overview -- 1.6.2. Gas-coal interactions -- 1.6.3. Fracturing and mechanical effects -- 1.7. Coal availability, resources and reserves -- 1.7.1. Coal resources -- 1.7.2. Global coal resources and reserves -- 1.7.3. Coal resources and reserves in France -- 1.8. The uses of coal -- 1.8.1. Steam coal -- 1.8.2. Iron and steel industry -- 1.8.3. Cement industry -- 1.8.4. Coal gasification -- 1.9. Coal gas exploitation -- 1.9.1. Different types of coal gas -- 1.9.2. Coal gas: a hazard turned resource -- 1.9.3. In situ coal gasification (UCG) -- 1.10. Coal and climate change -- 1.10.1. Various CO2 capture solutions for the coal-fired power plant sector -- 1.10.2. CCS for carbon-intensive industries -- 1.10.3. Enhanced coalbed methane recovery by CO2 injection (ECBM) -- 1.11. Acknowledgments -- 1.12. References -- Chapter 2. Hydrogeology of Fractured Media - With Special Reference to Coalbeds -- 2.1. Introduction -- 2.2. Controls on groundwater flow -- 2.2.1. Transmission of fluids - permeability -- 2.2.2. Storage of fluids - specific storage -- 2.2.3. Governing equations -- 2.3. Characterization methods -- 2.3.1. Laboratory methods -- 2.3.2. In situ methods -- |
|
|
|
|
|
|
|
|
|
2.4. Permeability evolution models -- 2.4.1. Strain-controlled models -- 2.4.2. Stress-controlled models -- 2.4.3. Supercritical fluids -- 2.5. Summary -- 2.6. References -- Chapter 3. Measurement of Coal Physical Properties: Poromechanical and Adsorption Testing -- 3.1. Introduction -- 3.2. Pressure, stress and strains in geological formations. |
3.3. Total gas-in-place and adsorption measurement -- 3.3.1. Manometric method -- 3.3.2. Volumetric method -- 3.3.3. Gravimetric method -- 3.3.4. Sorption models and extension to total adsorption amount -- 3.4. Adsorption-induced strains -- 3.4.1. Dilatometer tests - swelling isotherms -- 3.4.2. Adsorption-induced strains in triaxial testing -- 3.5. Adsorption-induced stresses -- 3.5.1. Isochoric tests -- 3.5.2. Uniaxial-strain test -- 3.6. Reservoir scale implications -- 3.6.1. Natural gas production: stress-dependent permeability -- 3.6.2. Natural gas production: desorption-induced shear failure -- 3.6.3. Carbon geological storage: coal swelling, fracture closing and injectivity decrease -- 3.7. Conclusions -- 3.8. References -- Chapter 4. Poromechanical Modeling of Coal Material -- 4.1. Relevant scale for material modeling -- 4.2. Physics of the phenomena involved -- 4.2.1. Fluids -- 4.2.2. Coal in the absence of fluid -- 4.2.3. Interactions between coal and pore fluids -- 4.2.4. Impact of temperature -- 4.3. Classical poromechanical modeling of a saturated material in the absence of sorption -- 4.3.1. System under consideration -- 4.3.2. Energy balances and state variables -- 4.3.3. Constitutive equations for an isotropic poroelastic material -- 4.4. Poromechanical modeling of microporous materials undergoing sorption -- 4.4.1. Approach based on the concept of apparent magnitudes (confinement coefficient) -- 4.4.2. Approach based on univocally defined state variables -- 4.5. Examples of possible model enhancements -- 4.5.1. Multi-scale porosity of coal -- 4.5.2. Anisotropy of the hydro-poromechanical behavior of coal -- 4.5.3. Transient effects related to transfers between fractures and the matrix -- 4.5.4. Fluid mixture -- 4.6. Limitations and perspectives of the models. |
4.6.1. Experimental limitations: complexity in interpreting experiments in light of models -- 4.6.2. Model perspectives -- 4.7. References -- Chapter 5. Molecular Scale Modeling of Coal and Its Behavior -- 5.1. Introduction -- 5.2. Nature of coal at the molecular scale -- 5.3. Atomic simulations of adsorption in coals -- 5.4. Adsorption modeling using DFT -- 5.5. Mechanics-adsorption coupling -- 5.5.1. Thermodynamic analysis of coupling and extended poromechanics -- 5.5.2. Molecular simulation of model systems -- 5.5.3. Simplified poro-mechanical model applied to coal -- 5.6. Conclusion -- 5.7. References -- Chapter 6. Reservoir-Scale Modeling -- 6.1. Introduction -- 6.2. Isothermal constitutive laws of coal in the presence of adsorbates -- 6.2.1. Gas behavior -- 6.2.2. Adsorption in a deformable coal matrix -- 6.2.3. Gas content in fractured coal -- 6.2.4. Poroelastic behavior -- 6.2.5. Mass transfer kinetics between coal matrix and fractures -- 6.2.6. Permeability of fractured coal -- 6.3. Reservoir scale field equations -- 6.3.1. Mechanical equilibrium -- 6.3.2. Gas transport -- 6.3.3. Synthesis of equations and unknowns for the problem: case of a single fluid -- 6.4. Numerical solution via the finite element method -- 6.4.1. Weak formulation of the field equations -- 6.4.2. Time stepping and spatial discretization -- 6.4.3. Iterative Newton method for solving -- 6.5. Application examples -- 6.5.1. Methane production -- 6.5.2. Carbon dioxide injection through a draining macroscopic fracture -- 6.6. Conclusion -- 6.7. References -- Chapter 7. Multiscale Modeling -- 7.1. Introduction -- 7.1.1. Different scales -- 7.1.2. Multiscale approaches -- 7.2. Principles of the FE2 method -- 7.2.1. |
|
|
|
|
|
|
|
|
|
Macro-to-micro transition (localization) -- 7.2.2. Solving the microscale problem -- 7.2.3. Micro-macro transition (homogenization). |
7.2.4. Solving the macroscale problem -- 7.2.5. FE2 method algorithm -- 7.3. Hydro-mechanical model -- 7.3.1. Representative volume element -- 7.3.2. Boundary conditions -- 7.3.3. Equilibrium equations -- 7.3.4. Microscopic constitutive laws -- 7.3.5. Microscopic numerical solution -- 7.3.6. Homogenized response -- 7.4. Application -- 7.4.1. Case study -- 7.4.2. Results -- 7.4.3. Discussion -- 7.5. Conclusion -- 7.6. References -- List of Authors -- Index -- EULA. |
|
|
|
|
|
|
Sommario/riassunto |
|
Geomechanics of Coal Seams explores the evolving role of coal, transitioning from a historically criticized energy source tied to the Industrial Revolution, to a material with the potential to play a significant role in achieving net-zero greenhouse gas emissions. Traditionally used as raw material, coal now serves as a reservoir for natural gas or carbon dioxide storage, offering a path toward reducing global greenhouse gas emissions. Despite its promise, challenges remain, particularly regarding its geomechanical behavior. This book delves into the unique properties of coal, covering everything from geological foundations to numerical modeling. Aimed at students, researchers, and engineers, the book provides valuable insights applicable to other microporous materials. |
|
|
|
|
|
|
|
| |