1.

Record Nr.

UNISA996308805703316

Autore

Scherschel Karin

Titolo

Rassismus als flexible symbolische Ressource : Eine Studie über rassistische Argumentationsfiguren / Karin Scherschel

Pubbl/distr/stampa

Bielefeld, : transcript Verlag, 2015

ISBN

3-8394-0290-5

Edizione

[1st ed.]

Descrizione fisica

1 online resource (254)

Collana

Kultur und soziale Praxis

Classificazione

MR 7100

Soggetti

Rassismus; Ethnizität; Qualitative Sozialforschung; Soziale Ungleichheit; Kultursoziologie; Gesellschaft; Soziologie; Racism; Qualitative Social Research; Social Inequality; Sociology of Culture; Society; Sociology

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Frontmatter    1  INHALT    5  EINLEITUNG    9  1. EIN INTERPRETATIONSANSATZ ZUR ANALYSE DES RASSISMUS    15  2. DIE THEORIE SOZIALER UNGLEICHHEIT PIERRE BOURDIEUS ZUR ANALYSE DES RASSISMUS    61  3. DIE EMPIRISCHE ANALYSE SPRACHLICH VERMITTELTER RASSISMEN    89  4. DIE EMPIRISCHEN BEFUNDE - RASSISMUS IN DER DISKUSSION    121  5. FOLGERUNGEN    221  6. LITERATUR    239  Backmatter    252

Sommario/riassunto

Rassismus in der Mitte der Gesellschaft kann weder durch die herkömmlichen Analysen zu Jugendgewalt und individuumszentrierte Deutungen noch durch ein Rassismusverständnis, das sich definitorisch am deutschen Nationalsozialismus orientiert, hinreichend verstanden werden. Die Autorin untersucht ihn dagegen als gesamtgesellschaftliches und in seinen Erscheinungsformen variables Phänomen. Die Studie verbindet Rassismuskonzepte (Hall, Miles, Balibar) mit Bourdieus Theorie sozialer Ungleichheit zu einem Analysemodell des Rassismus als flexibler symbolischer Ressource. Der empirische Teil zeigt an Gruppendiskussionen mit Akademikern und Facharbeitern, wie diese Ressource in Form spezifischer Argumentationsfiguren kommuniziert wird.

»Karin Scherschel leistet mit ihrer empirischen Studie über rassistische Argumentationsfiguren einen weiteren Beitrag zur Rassismusdebatte in Deutschland. Sie gibt zudem einen sehr guten linearen Überblick über



die bisherigen Rassismusansätze.«  www.socialnet.de    Besprochen in:    Zeitschrift für Genozidforschung, 2 (2006), Ruth Großmaß

2.

Record Nr.

UNINA9911019259203321

Autore

Gittins John C. <1938->

Titolo

Multi-armed bandit allocation indices / / John Gittins, Kevin Glazebrook, Richard Weber

Pubbl/distr/stampa

Chichester, : Wiley, 2011

ISBN

1-283-37409-9

9786613374097

0-470-98004-4

0-470-98003-6

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (311 p.)

Altri autori (Persone)

GlazebrookKevin D. <1950->

WeberRichard <1953->

Disciplina

519.5

Soggetti

Resource allocation - Mathematical models

Mathematical optimization

Programming (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Multi-armed Bandit Allocation Indices; Contents; Foreword; Foreword to the first edition; Preface; Preface to the first edition; 1 Introduction or exploration; Exercises; 2 Main ideas: Gittins index; 2.1 Introduction; 2.2 Decision processes; 2.3 Simple families of alternative bandit processes; 2.4 Dynamic programming; 2.5 Gittins index theorem; 2.6 Gittins index; 2.6.1 Gittins index and the multi-armed bandit; 2.6.2 Coins problem; 2.6.3 Characterization of the optimal stopping time; 2.6.4 The restart-in-state formulation; 2.6.5 Dependence on discount factor

2.6.6 Myopic and forwards induction policies2.7 Proof of the index theorem by interchanging bandit portions; 2.8 Continuous-time bandit processes; 2.9 Proof of the index theorem by induction and interchange argument; 2.10 Calculation of Gittins indices; 2.11 Monotonicity



conditions; 2.11.1 Monotone indices; 2.11.2 Monotone jobs; 2.12 History of the index theorem; 2.13 Some decision process theory; Exercises; 3 Necessary assumptions for indices; 3.1 Introduction; 3.2 Jobs; 3.3 Continuous-time jobs; 3.3.1 Definition; 3.3.2 Policies for continuous-time jobs

3.3.3 The continuous-time index theorem for a SFABP of jobs3.4 Necessary assumptions; 3.4.1 Necessity of an infinite time horizon; 3.4.2 Necessity of constant exponential discounting; 3.4.3 Necessity of a single processor; 3.5 Beyond the necessary assumptions; 3.5.1 Bandit-dependent discount factors; 3.5.2 Stochastic discounting; 3.5.3 Undiscounted rewards; 3.5.4 A discrete search problem; 3.5.5 Multiple processors; Exercises; 4 Superprocesses, precedence constraints and arrivals; 4.1 Introduction; 4.2 Bandit superprocesses; 4.3 The index theorem for superprocesses

4.4 Stoppable bandit processes4.5 Proof of the index theorem by freezing and promotion rules; 4.5.1 Freezing rules; 4.5.2 Promotion rules; 4.6 The index theorem for jobs with precedence constraints; 4.7 Precedence constraints forming an out-forest; 4.8 Bandit processes with arrivals; 4.9 Tax problems; 4.9.1 Ongoing bandits and tax problems; 4.9.2 Klimov's model; 4.9.3 Minimum EWFT for the M/G/1 queue; 4.10 Near optimality of nearly index policies; Exercises; 5 The achievable region methodology; 5.1 Introduction; 5.2 A simple example; 5.3 Proof of the index theorem by greedy algorithm

5.4 Generalized conservation laws and indexable systems5.5 Performance bounds for policies for branching bandits; 5.6 Job selection and scheduling problems; 5.7 Multi-armed bandits on parallel machines; Exercises; 6 Restless bandits and Lagrangian relaxation; 6.1 Introduction; 6.2 Restless bandits; 6.3 Whittle indices for restless bandits; 6.4 Asymptotic optimality; 6.5 Monotone policies and simple proofs of indexability; 6.6 Applications to multi-class queueing systems; 6.7 Performance bounds for the Whittle index policy; 6.8 Indices for more general resource configurations; Exercises

7 Multi-population random sampling (theory)

Sommario/riassunto

In 1989 the first edition of this book set out Gittins' pioneering index solution to the multi-armed bandit problem and his subsequent investigation of a wide of sequential resource allocation and stochastic scheduling problems. Since then there has been a remarkable flowering of new insights, generalizations and applications, to which Glazebrook and Weber have made major contributions. This second edition brings the story up to date. There are new chapters on the achievable region approach to stochastic optimization problems, the construction of performance bounds for suboptimal policies, W