| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9911019650603321 |
|
|
Titolo |
Characterisation of bulk solids / / edited by Don McGlinchey |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford, : Blackwell, 2005 |
|
|
|
|
|
|
|
ISBN |
|
9786610199723 |
9781280199721 |
1280199725 |
9781444305456 |
144430545X |
9781405143639 |
1405143630 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (280 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Bulk solids |
Bulk solids handling |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Sommario/riassunto |
|
Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, from minerals processing to bulk and fine chemicals, and the food and pharmaceutical industries, yet is rarely found in the curricula of engineering or chemistry departments. With contributions from leading authors in their respective fields, Characterisation of Bulk Solids provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019154503321 |
|
|
Titolo |
Modeling, performance analysis and control of robot manipulators / / edited by Etienne Dombre, Wisama Khalil |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London ; ; Newport Beach, CA, : ISTE, c2007 |
|
|
|
|
|
|
|
ISBN |
|
1-280-84763-8 |
9786610847631 |
0-470-61228-2 |
0-470-39449-8 |
1-84704-560-X |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (414 p.) |
|
|
|
|
|
|
Collana |
|
Control systems, robotics and manufacturing series |
|
|
|
|
|
|
Altri autori (Persone) |
|
DombreE (Etienne) |
KhalilW (Wisama) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Robotics |
Manipulators (Mechanism) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Modeling, Performance Analysis and Control of Robot Manipulators; Table of Contents; Chapter 1. Modeling and Identification of Serial Robots; 1.1. Introduction; 1.2. Geometric modeling; 1.2.1. Geometric description; 1.2.2. Direct geometric model; 1.2.3. Inverse geometric model; 1.2.3.1. Stating the problem; 1.2.3.2. Principle of Paul's method; 1.3. Kinematic modeling; 1.3.1. Direct kinematic model; 1.3.1.1 Calculation of the Jacobian matrix by derivation of the DGM; 1.3.1.2. Kinematic Jacobian matrix; 1.3.1.3. Decomposition of the kinematic Jacobian matrix into three matrices |
1.3.1.4. Dimension of the operational space of a robot1.3.2. Inverse kinematic model; 1.3.2.1. General form of the kinematic model; 1.3.2.2. Inverse kinematic model for the regular case; 1.3.2.3. Solution at the proximity of singular positions; 1.3.2.4. Inverse kinematic model of redundant robots; 1.4. Calibration of geometric parameters; 1.4.1. Introduction; 1.4.2. Geometric parameters; 1.4.2.1. Geometric parameters of the robot; 1.4.2.2. Parameters of the robot's location; 1.4.2.3. Geometric parameters of the end-effector; 1.4.3. Generalized |
|
|
|
|
|
|
|
|
|
|
|
differential model of a robot |
1.4.4. Principle of geometric calibration1.4.4.1. General form of the calibration model; 1.4.4.2. Identifying the geometric parameters; 1.4.4.3. Solving the identification equations; 1.4.5. Calibration methods of geometric parameters; 1.4.5.1. Calibration model by measuring the end-effector location; 1.4.5.2. Autonomous calibration models; 1.4.6. Correction of geometric parameters; 1.5. Dynamic modeling; 1.5.1. Lagrange formalism; 1.5.1.1. General form of dynamic equations; 1.5.1.2. Calculation of energy; 1.5.1.3. Properties of the dynamic mode; 1.5.1.4. Taking into consideration the friction |
1.5.1.5. Taking into account the inertia of the actuator's rotor1.5.1.6. Taking into consideration the forces and moments exerted by the end-effector on its environment; 1.5.2. Newton-Euler formalism; 1.5.2.1. Newton-Euler equations linear in the inertial parameters; 1.5.2.2. Practical form of Newton-Euler equations; 1.5.3. Determining the base inertial parameters; 1.6. Identification of dynamic parameters; 1.6.1. Introduction; 1.6.2. Identification principle of dynamic parameters; 1.6.2.1. Solving method; 1.6.2.2. Identifiable parameters; 1.6.2.3. Choice of identification trajectories |
1.6.2.4. Evaluation of joint coordinates1.6.2.5. Evaluation of joint torques; 1.6.3. Identification model using the dynamic model; 1.6.4. Sequential formulation of the dynamic model; 1.6.5. Practical considerations; 1.7. Conclusion; 1.8. Bibliography; Chapter 2. Modeling of Parallel Robots; 2.1. Introduction; 2.1.1. Characteristics of classic robots; 2.1.2. Other types of robot structure; 2.1.3. General advantages and disadvantages; 2.1.4. Present day uses; 2.1.4.1. Simulators and space applications; 2.1.4.2. Industrial applications; 2.1.4.3. Medical applications; 2.1.4.4. Precise positioning |
2.2. Machine types |
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents the most recent research results on modeling and control of robot manipulators.Chapter 1 gives unified tools to derive direct and inverse geometric, kinematic and dynamic models of serial robots and addresses the issue of identification of the geometric and dynamic parameters of these models.Chapter 2 describes the main features of serial robots, the different architectures and the methods used to obtain direct and inverse geometric, kinematic and dynamic models, paying special attention to singularity analysis.Chapter 3 introduces global |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9911019519603321 |
|
|
Autore |
Kumar Nitin |
|
|
Titolo |
Nonthermal Food Engineering Operations |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781119776468 |
1119776465 |
9781119776451 |
1119776457 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (526 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Soggetti |
|
Food science |
Biotechnological process control |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Series Page -- Title Page -- Copyright Page -- Preface -- Chapter 1 Artificial Intelligence (AI) in Food Processing -- 1.1 Introduction -- 1.2 Evolution of Artificial Intelligence -- 1.3 Artificial Intelligence in Food Processing -- 1.4 Artificial Neural Network (ANN) -- 1.4.1 Fats & -- Oils Quality Evaluation -- 1.4.2 Fruits Quality Evaluation -- 1.4.3 Dairy Products Quality Evaluation -- 1.4.4 Solvent Extraction -- 1.4.5 Microwave Assisted Extraction (MAE) -- 1.4.6 Ultrasound-Assisted Extraction (UAE) -- 1.4.7 Microwave Drying -- 1.4.8 Tray Drying -- 1.4.9 Osmotic Dehydration -- 1.4.10 Other Drying Process -- 1.4.11 Extrusion Process -- 1.4.12 Baking -- 1.4.13 Storage of Food Grains -- 1.5 Fuzzy Logic System -- 1.5.1 Fuzzy Logic Systems in Liquid Foods Processing -- 1.5.2 Fuzzy Logic Systems in Solid Foods Processing -- 1.5.3 Semisolid Products -- 1.5.4 Drying Process -- 1.5.5 Baking Process -- 1.5.6 Dairy Process -- 1.5.7 Thermal Process -- 1.5.8 Fermentation -- 1.6 Knowledge.Based Expert System (ES) -- 1.6.1 Applications of ES in the Food Processing Sector -- 1.7 Machine Learning System (ML) -- 1.7.1 Detection of Defects and Mechanical Damage in Fruits -- 1.7.2 ML in Foreign Material Detection -- 1.7.3 ML |
|
|
|
|
|
|
|
|
|
in Food Quality Evaluation -- 1.8 Conclusion -- References -- Chapter 2 Advances in Ultrasound in Food Industry -- 2.1 Introduction -- 2.2 Background of Ultrasound -- 2.3 Ultrasonic Waves -- 2.4 Applications of Ultrasonics in the Food Industry -- 2.4.1 Food Preservation -- 2.4.2 Food Processing -- 2.5 Detection of Fruit Quality -- 2.6 Ultrasound in Dairy Sector -- 2.7 Conclusion -- References -- Chapter 3 Biosensors in Food Quality and Safety -- 3.1 Introduction -- 3.2 What is a Biosensor? -- 3.2.1 Components of a Biosensor Diagnostic Technique -- 3.2.1.1 Biological Element -- 3.2.1.2 Physicochemical Transducer. |
3.2.1.3 Detector/Recognition of Signal -- 3.2.2 Basic Working Mechanism of Biosensors -- 3.2.3 Important Characteristics of Biosensors -- 3.3 Categorization of Biosensors -- 3.3.1 Calorimetric Biosensors -- 3.3.2 Electrochemical Biosensors -- 3.3.2.1 Amperometric Biosensors -- 3.3.2.2 Potentiometric Biosensors -- 3.3.2.3 Conductometric Biosensors -- 3.3.3 Optical Biosensors -- 3.3.4 Microbial-Based Biosensors -- 3.3.4.1 Electrochemical Microbial Biosensors -- 3.3.4.2 Optical Microbial Biosensors -- 3.3.5 Affinity Biosensors -- 3.3.6 Plant Tissue Biosensors -- 3.3.7 Surface Plasmon Resonance (SPR) Biosensors -- 3.3.8 Acoustic Sensors -- 3.3.9 Aptamers -- 3.3.10 Molecularly Imprinted Polymers -- 3.3.11 Immunosensors -- 3.4 Application of Biosensors -- 3.4.1 Scenario of Available Biosensors for the Detection of Various Compounds Present in Food Products -- 3.4.2 Electrochemical Biosensors for Food Products -- 3.4.3 Optical Biosensor -- 3.4.4 Microbial Biosensors -- 3.4.5 Plant Tissue Biosensors -- 3.5 Future Prospects -- References -- Chapter 4 Cold Plasma: Principles and Applications -- 4.1 Introduction -- 4.2 Physics of Plasma -- 4.3 Methods of Generation -- 4.3.1 Dielectric Barrier Discharge (DBD) -- 4.3.2 Glow Discharge -- 4.3.3 Plasma Jet -- 4.3.4 Corona Discharge -- 4.3.5 High Voltage Pulse Discharge -- 4.4 Principles of Cold Plasma Decontamination -- 4.5 Plasma Speciesf Role in Microbial Inactivation -- 4.5.1 Reactive Oxygen and Reactive Nitrogen Species -- 4.6 Cold Plasma Affecting Microbial Cells -- 4.6.1 Effect on Cell Morphology -- 4.6.2 Impact on the Cell Membrane -- 4.6.3 Effect on Nucleic Acids -- 4.6.4 Impact on Enzyme and Proteins Activity -- 4.7 Limitations -- 4.8 Conclusion and Future Prospects -- References -- Chapter 5 Food Extrusion: An Approach to Wholesome Product -- 5.1 Introduction. |
5.2 Principle and Components of Extrusion Equipment -- 5.3 Types of Extruders -- 5.3.1 Single Screw Extruders -- 5.3.2 Twin Screw Extruders -- 5.4 Food Product Based on Extrusion Technology -- 5.5 Effect of Extrusion Cooking on Nutritional Aspects of Food -- 5.6 New Research Area of Byproduct Waste Utilization -- 5.7 Conclusion -- References -- Chapter 6 Image Processing Technology, Imaging Techniques, and Their Application in the Food Processing Sector -- 6.1 Introduction -- 6.2 Image Processing Technology -- 6.2.1 Image Acquisition -- 6.2.2 Image Pre-Processing -- 6.2.3 Image Segmentation -- 6.2.4 Feature Extraction -- 6.2.5 Classification -- 6.3 Machine Learning Algorithms -- 6.4 Industrial Applications -- 6.5 Novel Imaging Techniques and Their Applications -- 6.5.1 Near Infrared Imaging -- 6.5.2 Multispectral and Hyperspectral Imaging -- 6.5.3 Raman Imaging -- 6.5.4 Laser Light Backscattering Imaging -- 6.5.5 Structured-Illumination Reflectance Imaging -- 6.5.6 Optical Coherence Tomography -- 6.6 Challenges and Opportunities -- References -- Chapter 7 Active and Passive Modified Atmosphere Packaging: Recent Advances -- 7.1 Introduction -- 7.2 Modified Atmosphere Packaging -- 7.2.1 Passive MAP -- 7.2.1.1 Gases Utilised in Modified Atmosphere Packaging -- 7.2.2 Active MAP -- 7.2.2.1 Active Ingredients -- 7.2.2.2 Dynamics of MAP -- 7.2.2.3 Design of |
|
|
|
|
|
|
|
Modified Atmosphere Packaging -- 7.2.2.4 Packaging Materials Used in MAP -- 7.2.3 MAP Combined with Other Preservative Techniques -- 7.2.3.1 Heat Treatment -- 7.2.3.2 Irradiation -- 7.2.3.3 UV Light Radiation -- 7.2.3.4 Ozone Gas -- 7.2.3.5 Edible or Wax Coatings -- 7.2.4 Effect of MAP on Quality of Fresh Produce -- 7.3 Final Remarks -- References -- Chapter 8 Membrane Processing Techniques in Food Engineering -- 8.1 Introduction -- 8.2 Overview of Membranes -- 8.3 Types of Membrane Separation Processes. |
8.3.1 Pressure-Driven Processes -- 8.3.2 Filtration Spectrum -- 8.4 Filtration Modes -- 8.4.1 Dead-End Filtration -- 8.4.2 Crossflow Filtration -- 8.4.3 Hybrid-Flow Filtration -- 8.5 Membrane Structure -- 8.6 Important Terms Related to Membrane Processes -- 8.7 Operational Requirements of Membranes -- 8.8 Theoretical Models for Membrane Processes -- 8.9 Factors Affecting the Separation Processes -- 8.10 Major Advantages of Membranes -- 8.11 Microfiltration -- 8.11.1 Microfiltration Applications by Industry -- 8.12 Ultrafiltration -- 8.12.1 UF Applications -- 8.13 Nanofiltration -- 8.13.1 Applications of Nanofiltration -- 8.14 Application of Membrane Separation in Food Industry -- 8.15 Conclusion -- References -- Chapter 9 Nano Technology in Food Packaging -- 9.1 Introduction -- 9.2 Nanomaterials -- 9.2.1 Silver Nanomaterial (AgNPs) -- 9.2.2 Titanium Dioxide (TiO2) -- 9.2.3 Montmorillonite Clay (Nanoclay) -- 9.2.4 Nano Zinc Oxide -- 9.2.5 Nano Silica -- 9.2.6 Carbon Nanotubes (CNTs) -- 9.2.7 Nano Starch -- 9.2.8 Nanocellulose -- 9.3 Use of Nanotechnology in Improved Packaging -- 9.3.1 Improving the Mechanical Strength and Permeability Properties -- 9.3.2 Improving Thermal Stability -- 9.3.3 Accelerating the Biodegradation Process -- 9.4 Use of Nanotechnology in Active Packaging -- 9.4.1 Antimicrobial Packaging -- 9.4.2 Nanoemulsion -- 9.4.3 Oxygen Scavengers -- 9.4.4 Immobilization of Enzymes -- 9.5 Use of Nanotechnology in Smart Packaging -- 9.5.1 Oxygen Sensors -- 9.5.2 Nanosensors for Detection of Pathogens -- 9.5.3 Freshness Indicators -- 9.5.4 Time Temperature Indicators -- 9.6 Toxicological Aspects, Safety Consideration, and Migration of Nanoparticles -- 9.7 Future Outlook and Conclusion -- References -- Chapter 10 Polysaccharide-Based Bionanocomposites for Food Packaging -- 10.1 Introduction -- 10.2 Classification of Polysaccharides. |
10.2.1 Plant-Based Polysaccharides -- 10.2.1.1 Starch -- 10.2.1.2 Cellulose -- 10.2.1.3 Galactomannans -- 10.2.2 Animal-Based Polysaccharides -- 10.2.2.1 Chitosan -- 10.2.2.2 Carrageenan -- 10.2.3 Microorganism-Based Polysaccharides -- 10.2.3.1 Xanthan Gum -- 10.2.3.2 Gellan Gum -- 10.2.3.3 Pullulan -- 10.2.3.4 FucoPol -- 10.3 Extraction and Purification of Polysaccharides -- 10.3.1 Extraction of Polysaccharides -- 10.3.1.1 Hot Water Extraction -- 10.3.1.2 Sequential Extraction Method -- 10.3.1.3 Dilute Alkali-Water Extraction -- 10.3.1.4 Microwave-Assisted Extraction -- 10.3.1.5 Ultrasound-Assisted Extraction -- 10.3.1.6 Enzyme-Assisted Extraction -- 10.3.1.7 Subcritical Water Extraction -- 10.3.2 Purification Techniques -- 10.3.2.1 Fractional Precipitation -- 10.3.2.2 Chromatographic Techniques -- 10.4 Polysaccharide-Based Bionanocomposite Fabrication Techniques -- 10.4.1 Solution Intercalation -- 10.4.2 In Situ Intercalative Polymerization -- 10.4.3 Melt Intercalation -- 10.4.4 Extrusion -- 10.4.5 Electrospinning Technique -- 10.4.6 Freeze-Drying Technique -- 10.5 Polysaccharide-Based Nanocomposites: Classification and Food Applications -- 10.5.1 Polysaccharide-Based Nanocomposites with Graphene/Carbon Nanotubes -- 10.5.2 Polysaccharide-Based Nanocomposites with Metal Oxides -- 10.5.2.1 Silver-Based Nanoparticles -- 10.5.2.2 Zinc Oxide Nanoparticles -- |
|
|
|
|
|
|
|
|
|
10.5.2.3 Copper Oxide Nanoparticles -- 10.5.2.4 Titanium Dioxide Nanoparticles -- 10.5.3 Polysaccharides-Based Nanocomposites with Other Reinforcement Materials -- 10.5.3.1 Bionanocomposites Based on Starch -- 10.5.3.2 Bionanocomposites Based on Chitosan -- 10.5.3.3 Bionanocomposites Based on Cellulose -- 10.6 Conclusions -- References -- Chapter 11 Smart, Intelligent, and Active Packaging Systems for Shelf-Life Extension of Foods -- 11.1 Introduction -- 11.2 Novel Types of Food Packaging. |
11.3 Regulatory Framework. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book, part of a comprehensive series on bioprocessing in food science, focuses on nonthermal food engineering operations. It covers recent technological developments in food science and food process engineering, including microbial fermentation, enzyme technology, genetic engineering, and bioreactor design. The series aims to disseminate knowledge to students, researchers, and professionals in the food industry, enabling them to make informed decisions regarding technology adoption and implementation. The book addresses the challenges posed by population growth and climate change, emphasizing the role of bioprocessing in ensuring a sustainable food supply. It serves as an essential resource for academia and industry, providing insights into the practical applications and future research directions in food bioprocessing. |
|
|
|
|
|
|
|
| |