1.

Record Nr.

UNINA9910338752203321

Titolo

Journal of electrical engineering theory and application : JEETA

Pubbl/distr/stampa

[Place of publication not identified], : HyperSciences, 2010-

ISSN

1737-9369

Soggetti

Electrical engineering

Génie électrique

Periodicals.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

Refereed/Peer-reviewed

2.

Record Nr.

UNINA9911019151503321

Autore

Farrell Jay

Titolo

Adaptive approximation based control : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou

Pubbl/distr/stampa

Hoboken, N.J., : Wiley-Interscience, c2006

ISBN

9786610448043

9781280448041

1280448040

9780470325018

0470325011

9780471781813

0471781819

9780471781806

0471781800

Descrizione fisica

1 online resource (440 p.)

Collana

Wiley series in adaptive and learning systems for signal processing, communication and control

Altri autori (Persone)

PolycarpouMarios

Disciplina

629.8/36

Soggetti

Adaptive control systems

Feedback control systems

Lingua di pubblicazione

Inglese



Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 401-415) and index.

Nota di contenuto

ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation

2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types

3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties

3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems

4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence

4.6 Robust Learning Algorithms

Sommario/riassunto

A highly accessible and unified approach to the design and analysis of intelligent control systemsAdaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox.Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable



readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered b

3.

Record Nr.

UNISANNIOUSM1557046

Autore

Salvi, Cesare <1948-    >

Titolo

La responsabilità civile / Cesare Salvi

Pubbl/distr/stampa

Milano, : Giuffrè, 2005

Titolo uniforme

La responsabilità civile

ISBN

881411854X

Edizione

[2. ed]

Descrizione fisica

XIV, 336 p. ; 22 cm.

Disciplina

346.45

Collocazione

TRA       16                      TRADDP

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia