1.

Record Nr.

UNISALENTO991003190549707536

Autore

Bouchardon, Edme <1698-1762.>

Titolo

Etudes prises dans le bas peuple où Les cris de Paris ..

Pubbl/distr/stampa

Paris, Fessard, 1737-38

Descrizione fisica

3 v. in 1. : tav.; 33 cm.

Soggetti

Paris Vita e costumi sociali

Lingua di pubblicazione

Francese

Formato

Microfilm

Livello bibliografico

Monografia

Note generali

Front. incisi.

Riproduzione in microfiche dell'originale conservato presso la Biblioteca Apostolica Vaticana

2.

Record Nr.

UNINA9911018945003321

Autore

Takezawa Kunio <1959->

Titolo

Introduction to nonparametric regression / / Kunio Takezawa

Pubbl/distr/stampa

Hoboken, N.J., : Wiley-Interscience, c2006

ISBN

9786610286980

9781280286988

1280286989

9780470362617

0470362618

9780471771456

0471771457

9780471771449

0471771449

Descrizione fisica

1 online resource (566 p.)

Collana

Wiley series in probability and statistics

Disciplina

519.5/36

Soggetti

Regression analysis

Nonparametric statistics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 529-531) and index.

Nota di contenuto

INTRODUCTION TO NONPARAMETRIC REGRESSION; CONTENTS; Preface; Acknowledgments; 1 Exordium; 1.1 Introduction; 1.2 Are the moving average and Fourier series sufficiently useful?; 1.3 Is a histogram or normal distribution sufficiently powerful?; 1.4 Is interpolation sufficiently powerful?; 1.5 Should we use a descriptive equation?; 1.6 Parametric regression and nonparametric regression; 2 Smoothing for data with an equispaced predictor; 2.1 Introduction; 2.2 Moving average and binomial filter; 2.3 Hat matrix; 2.4 Local linear regression; 2.5 Smoothing spline

2.6 Analysis on eigenvalue of hat matrix2.7 Examples of S-Plus object; References; Problems; 3 Nonparametric regression for one-dimensional predictor; 3.1 Introduction; 3.2 Trade-off between bias and variance; 3.3 Index to select beneficial regression equations; 3.4 Nadaraya-Watson estimator; 3.5 Local polynomial regression; 3.6 Natural spline and smoothing spline; 3.7 LOESS; 3.8 Supersmoother; 3.9 LOWESS; 3.10 Examples of S-Plus object; References; Problems; 4 Multidimensional smoothing; 4.1 Introduction; 4.2 Local polynomial regression for multidimensional predictor

4.3 Thin plate smoothing splines4.4 LOESS and LOWESS with plural predictors; 4.5 Kriging; 4.6 Additive model; 4.7 ACE; 4.8 Projection pursuit regression; 4.9 Examples of S-Plus object; References; Problems; 5 Nonparametric regression with predictors represented as distributions; 5.1 Introduction; 5.2 Use of distributions as predictors; 5.3 Nonparametric DVR method; 5.4 Form of nonparametric regression with predictors represented as distributions; 5.5 Examples of S-Plus object; References; Problems; 6 Smoothing of histograms and nonparametric probability density functions; 6.1 Introduction

6.2 Histogram6.3 Smoothing a histogram; 6.4 Nonparametnc probability density function; 6.5 Examples of S-Plus object; References; Problems; 7 Pattern recognition; 7.1 Introduction; 7.2 Bayes' decision rule; 7.3 Linear discriminant rule and quadratic discriminant rule; 7.4 Classification using nonparametric probability density function; 7.5 Logistic regression; 7.6 Neural networks; 7.7 Tree-based model; 7.8 k-nearest-neighbor classifier; 7.9 Nonparametric regression based on the least squares; 7.10 Transformation of feature vectors; 7.11 Examples of S-Plus object; References; Problems

Appendix A: Creation and applications of B-spline basesA.1 Introduction; A.2 Method to create B-spline basis; A.3 Natural spline created by B-spline; A.4 Application to smoothing spline; A.5 Examples of S-Plus object; References; Appendix B: R objects; B.1 Introduction; B.2 Transformation of S-Plus objects in Chapter 2; B.3 Transformation of S-Plus objects in Chapter 3; B.4 Transformation of S-Plus objects in Chapter 4; B.5 Transformation of S-Plus objects in Chapter 5; B.6 Transformation of S-Plus objects in Chapter 6; B.7 Transformation of S-Plus objects in Chapter 7

B.8 Transformation of S-Plus objects in Appendix A

Sommario/riassunto

An easy-to-grasp introduction to nonparametric regressionThis book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features:* Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods* Statistical techniques



accompanied by clear numerical examples that fur