1.

Record Nr.

UNINA9910311760003321

Autore

Yorke, Francis Reginald Stevens

Titolo

The modern house in England / by F. R. S. Yorke

Pubbl/distr/stampa

London : The architectural press, 1948

Edizione

[3. ed.]

Descrizione fisica

140 p., [3] p. di tav. : ill. ; 30 cm

Disciplina

728.094209043

Locazione

DARPU

Collocazione

C 1105 CAN

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910637296503321

Autore

Migne J.-P (Jacques-Paul), <1800-1875>

Titolo

Patrologiae Cursus Completus, sive bibliotheca universalis ... omnium S.S. Patrum, Doctorum, Scriptorumque ecclesiasticorum qui ab aevo apostolico ad Innocentii III tempora floruerunt ... Series Secunda, . Patrologiae Tomus CLXVII [[electronic resource]]

Pubbl/distr/stampa

Ann Arbor, Michigan : , : ProQuest LLC, , 1996

Descrizione fisica

1 online resource

Soggetti

Christian literature, Early - Latin authors

Lingua di pubblicazione

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Contains works by : R. D. D. Rupertus [Tomus primus].



3.

Record Nr.

UNINA9911018752603321

Autore

Abedin Mohammad Zoynul

Titolo

Machine Learning Technologies on Energy Economics and Finance : Energy and Sustainable Analytics, Volume 1 / / edited by Mohammad Zoynul Abedin, Wang Yong

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031948626

9783031948619

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (413 pages)

Collana

International Series in Operations Research & Management Science, , 2214-7934 ; ; 367

Altri autori (Persone)

YongWang

Disciplina

658.5

Soggetti

Production management

Business information services

Financial engineering

Machine learning

Energy policy

Sustainability

Operations Management

IT in Business

Financial Technology and Innovation

Machine Learning

Energy Policy, Economics and Management

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Analyzing Global Energy Patterns: Clustering Countries and Predicting Trends Towards Achieving Sustainable Development Goals -- Access to Energy Finance: Development of Renewable Energy in Bangladesh -- Explainable AI in Energy Forecasting: Understanding Natural Gas Consumption through Interpretable Machine Learning Models -- An Extensive Statistical Analysis of Time Series Modelling and Forecasting of Crude Oil Prices -- Comparative analysis of selected emerging economies energy transition scenario: A transition pathway for the continental neighbours -- Forecasting Energy Prices using Machine



Learning Algorithms: A Comparative Analysis -- An Evidence-based Explainable AI Approach for Analyzing the Influence of CO2 Emissions on Sustainable Economic Growth -- BLDAR: A Blending Ensemble Learning Approach for Primary Energy Consumption Analysis -- Analyzing Biogas Production in Livestock Farms Using Explainable Machine Learning -- Application of Machine Learning Techniques in the Analysis of Sustainable Energy Finance -- Machine Learning and Deep Learning Strategies for Sustainable Renewable Energy: A Comprehensive Review -- Efficient Gasoline Spot Price Prediction using Hyperparameter Optimization and Ensemble Machine Learning Approach -- The Implications of Energy Transition and Development of Renewable Energy on Sustainable Development Goals of Two Asian Tigers.

Sommario/riassunto

This book explores the latest innovations in energy economics and finance, with a particular focus on the role of machine learning algorithms in advancing the energy sector. It examines key factors shaping this field, including market structures, regulatory frameworks, environmental impacts, and the dynamics of the global energy market. It discusses the critical application of machine learning (ML) in energy financing, introducing predictive tools for forecasting energy prices across various sectors—such as crude oil, electricity, fuelwood, solar, and natural gas. It also addresses how ML can predict investor behavior and assess the efficiency of energy markets, with a focus on both the opportunities and challenges in renewable energy and energy finance. This book serves as a comprehensive guide for academics, practitioners, financial managers, stakeholders, government officials, and policymakers who seek strategies to enhance energy systems, reduce costs and uncertainties, and optimize revenue for economic growth. This is the first volume of a two-volume set.